Merge branch 'master' into feature/porting-to-trio

This commit is contained in:
mhchia
2019-12-24 02:19:43 +08:00
112 changed files with 3868 additions and 1946 deletions

View File

@ -1,173 +0,0 @@
from collections import Counter
import logging
from .kad_peerinfo import KadPeerHeap, create_kad_peerinfo
from .utils import gather_dict
log = logging.getLogger(__name__)
class SpiderCrawl:
"""Crawl the network and look for given 160-bit keys."""
def __init__(self, protocol, node, peers, ksize, alpha):
"""
Create a new C{SpiderCrawl}er.
Args:
protocol: A :class:`~kademlia.protocol.KademliaProtocol` instance.
node: A :class:`~kademlia.node.Node` representing the key we're
looking for
peers: A list of :class:`~kademlia.node.Node` instances that
provide the entry point for the network
ksize: The value for k based on the paper
alpha: The value for alpha based on the paper
"""
self.protocol = protocol
self.ksize = ksize
self.alpha = alpha
self.node = node
self.nearest = KadPeerHeap(self.node, self.ksize)
self.last_ids_crawled = []
log.info("creating spider with peers: %s", peers)
self.nearest.push(peers)
async def _find(self, rpcmethod):
"""
Get either a value or list of nodes.
Args:
rpcmethod: The protocol's callfindValue or call_find_node.
The process:
1. calls find_* to current ALPHA nearest not already queried nodes,
adding results to current nearest list of k nodes.
2. current nearest list needs to keep track of who has been queried
already sort by nearest, keep KSIZE
3. if list is same as last time, next call should be to everyone not
yet queried
4. repeat, unless nearest list has all been queried, then ur done
"""
log.info("crawling network with nearest: %s", str(tuple(self.nearest)))
count = self.alpha
if self.nearest.get_ids() == self.last_ids_crawled:
count = len(self.nearest)
self.last_ids_crawled = self.nearest.get_ids()
dicts = {}
for peer in self.nearest.get_uncontacted()[:count]:
dicts[peer.peer_id_bytes] = rpcmethod(peer, self.node)
self.nearest.mark_contacted(peer)
found = await gather_dict(dicts)
return await self._nodes_found(found)
async def _nodes_found(self, responses):
raise NotImplementedError
class ValueSpiderCrawl(SpiderCrawl):
def __init__(self, protocol, node, peers, ksize, alpha):
SpiderCrawl.__init__(self, protocol, node, peers, ksize, alpha)
# keep track of the single nearest node without value - per
# section 2.3 so we can set the key there if found
self.nearest_without_value = KadPeerHeap(self.node, 1)
async def find(self):
"""Find either the closest nodes or the value requested."""
return await self._find(self.protocol.call_find_value)
async def _nodes_found(self, responses):
"""Handle the result of an iteration in _find."""
toremove = []
found_values = []
for peerid, response in responses.items():
response = RPCFindResponse(response)
if not response.happened():
toremove.append(peerid)
elif response.has_value():
found_values.append(response.get_value())
else:
peer = self.nearest.get_node(peerid)
self.nearest_without_value.push(peer)
self.nearest.push(response.get_node_list())
self.nearest.remove(toremove)
if found_values:
return await self._handle_found_values(found_values)
if self.nearest.have_contacted_all():
# not found!
return None
return await self.find()
async def _handle_found_values(self, values):
"""
We got some values!
Exciting. But let's make sure they're all the same or freak out
a little bit. Also, make sure we tell the nearest node that
*didn't* have the value to store it.
"""
value_counts = Counter(values)
if len(value_counts) != 1:
log.warning(
"Got multiple values for key %i: %s", self.node.xor_id, str(values)
)
value = value_counts.most_common(1)[0][0]
peer = self.nearest_without_value.popleft()
if peer:
await self.protocol.call_store(peer, self.node.peer_id_bytes, value)
return value
class NodeSpiderCrawl(SpiderCrawl):
async def find(self):
"""Find the closest nodes."""
return await self._find(self.protocol.call_find_node)
async def _nodes_found(self, responses):
"""Handle the result of an iteration in _find."""
toremove = []
for peerid, response in responses.items():
response = RPCFindResponse(response)
if not response.happened():
toremove.append(peerid)
else:
self.nearest.push(response.get_node_list())
self.nearest.remove(toremove)
if self.nearest.have_contacted_all():
return list(self.nearest)
return await self.find()
class RPCFindResponse:
def __init__(self, response):
"""
A wrapper for the result of a RPC find.
Args:
response: This will be a tuple of (<response received>, <value>)
where <value> will be a list of tuples if not found or
a dictionary of {'value': v} where v is the value desired
"""
self.response = response
def happened(self):
"""Did the other host actually respond?"""
return self.response[0]
def has_value(self):
return isinstance(self.response[1], dict)
def get_value(self):
return self.response[1]["value"]
def get_node_list(self):
"""
Get the node list in the response.
If there's no value, this should be set.
"""
nodelist = self.response[1] or []
return [create_kad_peerinfo(*nodeple) for nodeple in nodelist]

View File

@ -1,153 +0,0 @@
import heapq
from operator import itemgetter
import random
from typing import List
from multiaddr import Multiaddr
from libp2p.peer.id import ID
from libp2p.peer.peerinfo import PeerInfo
from .utils import digest
P_IP = "ip4"
P_UDP = "udp"
class KadPeerInfo(PeerInfo):
def __init__(self, peer_id, addrs):
super(KadPeerInfo, self).__init__(peer_id, addrs)
self.peer_id_bytes = peer_id.to_bytes()
self.xor_id = peer_id.xor_id
self.addrs = addrs
self.ip = self.addrs[0].value_for_protocol(P_IP) if addrs else None
self.port = int(self.addrs[0].value_for_protocol(P_UDP)) if addrs else None
def same_home_as(self, node):
return sorted(self.addrs) == sorted(node.addrs)
def distance_to(self, node):
"""Get the distance between this node and another."""
return self.xor_id ^ node.xor_id
def __iter__(self):
"""
Enables use of Node as a tuple - i.e., tuple(node) works.
"""
return iter([self.peer_id_bytes, self.ip, self.port])
def __repr__(self):
return repr([self.xor_id, self.ip, self.port, self.peer_id_bytes])
def __str__(self):
return "%s:%s" % (self.ip, str(self.port))
def encode(self):
return (
str(self.peer_id_bytes)
+ "\n"
+ str("/ip4/" + str(self.ip) + "/udp/" + str(self.port))
)
class KadPeerHeap:
"""A heap of peers ordered by distance to a given node."""
def __init__(self, node, maxsize):
"""
Constructor.
@param node: The node to measure all distnaces from.
@param maxsize: The maximum size that this heap can grow to.
"""
self.node = node
self.heap = []
self.contacted = set()
self.maxsize = maxsize
def remove(self, peers):
"""
Remove a list of peer ids from this heap.
Note that while this heap retains a constant visible size (based
on the iterator), it's actual size may be quite a bit larger
than what's exposed. Therefore, removal of nodes may not change
the visible size as previously added nodes suddenly become
visible.
"""
peers = set(peers)
if not peers:
return
nheap = []
for distance, node in self.heap:
if node.peer_id_bytes not in peers:
heapq.heappush(nheap, (distance, node))
self.heap = nheap
def get_node(self, node_id):
for _, node in self.heap:
if node.peer_id_bytes == node_id:
return node
return None
def have_contacted_all(self):
return len(self.get_uncontacted()) == 0
def get_ids(self):
return [n.peer_id_bytes for n in self]
def mark_contacted(self, node):
self.contacted.add(node.peer_id_bytes)
def popleft(self):
return heapq.heappop(self.heap)[1] if self else None
def push(self, nodes):
"""
Push nodes onto heap.
@param nodes: This can be a single item or a C{list}.
"""
if not isinstance(nodes, list):
nodes = [nodes]
for node in nodes:
if node not in self:
distance = self.node.distance_to(node)
heapq.heappush(self.heap, (distance, node))
def __len__(self):
return min(len(self.heap), self.maxsize)
def __iter__(self):
nodes = heapq.nsmallest(self.maxsize, self.heap)
return iter(map(itemgetter(1), nodes))
def __contains__(self, node):
for _, other in self.heap:
if node.peer_id_bytes == other.peer_id_bytes:
return True
return False
def get_uncontacted(self):
return [n for n in self if n.peer_id_bytes not in self.contacted]
def create_kad_peerinfo(node_id_bytes=None, sender_ip=None, sender_port=None):
node_id = (
ID(node_id_bytes) if node_id_bytes else ID(digest(random.getrandbits(255)))
)
addrs: List[Multiaddr]
if sender_ip and sender_port:
addrs = [
Multiaddr(
"/" + P_IP + "/" + str(sender_ip) + "/" + P_UDP + "/" + str(sender_port)
)
]
else:
addrs = []
return KadPeerInfo(node_id, addrs)

View File

@ -1,251 +0,0 @@
"""Package for interacting on the network at a high level."""
import asyncio
import logging
import pickle
from .crawling import NodeSpiderCrawl, ValueSpiderCrawl
from .kad_peerinfo import create_kad_peerinfo
from .protocol import KademliaProtocol
from .storage import ForgetfulStorage
from .utils import digest
log = logging.getLogger(__name__)
class KademliaServer:
"""
High level view of a node instance.
This is the object that should be created to start listening as an
active node on the network.
"""
protocol_class = KademliaProtocol
def __init__(self, ksize=20, alpha=3, node_id=None, storage=None):
"""
Create a server instance. This will start listening on the given port.
Args:
ksize (int): The k parameter from the paper
alpha (int): The alpha parameter from the paper
node_id: The id for this node on the network.
storage: An instance that implements
:interface:`~kademlia.storage.IStorage`
"""
self.ksize = ksize
self.alpha = alpha
self.storage = storage or ForgetfulStorage()
self.node = create_kad_peerinfo(node_id)
self.transport = None
self.protocol = None
self.refresh_loop = None
self.save_state_loop = None
def stop(self):
if self.transport is not None:
self.transport.close()
if self.refresh_loop:
self.refresh_loop.cancel()
if self.save_state_loop:
self.save_state_loop.cancel()
def _create_protocol(self):
return self.protocol_class(self.node, self.storage, self.ksize)
async def listen(self, port=0, interface="0.0.0.0"):
"""
Start listening on the given port.
Provide interface="::" to accept ipv6 address
"""
loop = asyncio.get_event_loop()
listen = loop.create_datagram_endpoint(
self._create_protocol, local_addr=(interface, port)
)
self.transport, self.protocol = await listen
socket = self.transport.get_extra_info("socket")
self.address = socket.getsockname()
log.info(
"Node %i listening on %s:%i",
self.node.xor_id,
self.address[0],
self.address[1],
)
# finally, schedule refreshing table
self.refresh_table()
def refresh_table(self):
log.debug("Refreshing routing table")
asyncio.ensure_future(self._refresh_table())
loop = asyncio.get_event_loop()
self.refresh_loop = loop.call_later(3600, self.refresh_table)
async def _refresh_table(self):
"""Refresh buckets that haven't had any lookups in the last hour (per
section 2.3 of the paper)."""
results = []
for node_id in self.protocol.get_refresh_ids():
node = create_kad_peerinfo(node_id)
nearest = self.protocol.router.find_neighbors(node, self.alpha)
spider = NodeSpiderCrawl(
self.protocol, node, nearest, self.ksize, self.alpha
)
results.append(spider.find())
# do our crawling
await asyncio.gather(*results)
# now republish keys older than one hour
for dkey, value in self.storage.iter_older_than(3600):
await self.set_digest(dkey, value)
def bootstrappable_neighbors(self):
"""
Get a :class:`list` of (ip, port) :class:`tuple` pairs suitable for use
as an argument to the bootstrap method.
The server should have been bootstrapped
already - this is just a utility for getting some neighbors and then
storing them if this server is going down for a while. When it comes
back up, the list of nodes can be used to bootstrap.
"""
neighbors = self.protocol.router.find_neighbors(self.node)
return [tuple(n)[-2:] for n in neighbors]
async def bootstrap(self, addrs):
"""
Bootstrap the server by connecting to other known nodes in the network.
Args:
addrs: A `list` of (ip, port) `tuple` pairs. Note that only IP
addresses are acceptable - hostnames will cause an error.
"""
log.debug("Attempting to bootstrap node with %i initial contacts", len(addrs))
cos = list(map(self.bootstrap_node, addrs))
gathered = await asyncio.gather(*cos)
nodes = [node for node in gathered if node is not None]
spider = NodeSpiderCrawl(
self.protocol, self.node, nodes, self.ksize, self.alpha
)
return await spider.find()
async def bootstrap_node(self, addr):
result = await self.protocol.ping(addr, self.node.peer_id_bytes)
return create_kad_peerinfo(result[1], addr[0], addr[1]) if result[0] else None
async def get(self, key):
"""
Get a key if the network has it.
Returns:
:class:`None` if not found, the value otherwise.
"""
log.info("Looking up key %s", key)
dkey = digest(key)
# if this node has it, return it
if self.storage.get(dkey) is not None:
return self.storage.get(dkey)
node = create_kad_peerinfo(dkey)
nearest = self.protocol.router.find_neighbors(node)
if not nearest:
log.warning("There are no known neighbors to get key %s", key)
return None
spider = ValueSpiderCrawl(self.protocol, node, nearest, self.ksize, self.alpha)
return await spider.find()
async def set(self, key, value):
"""Set the given string key to the given value in the network."""
if not check_dht_value_type(value):
raise TypeError("Value must be of type int, float, bool, str, or bytes")
log.info("setting '%s' = '%s' on network", key, value)
dkey = digest(key)
return await self.set_digest(dkey, value)
async def provide(self, key):
"""publish to the network that it provides for a particular key."""
neighbors = self.protocol.router.find_neighbors(self.node)
return [
await self.protocol.call_add_provider(n, key, self.node.peer_id_bytes)
for n in neighbors
]
async def get_providers(self, key):
"""get the list of providers for a key."""
neighbors = self.protocol.router.find_neighbors(self.node)
return [await self.protocol.call_get_providers(n, key) for n in neighbors]
async def set_digest(self, dkey, value):
"""Set the given SHA1 digest key (bytes) to the given value in the
network."""
node = create_kad_peerinfo(dkey)
nearest = self.protocol.router.find_neighbors(node)
if not nearest:
log.warning("There are no known neighbors to set key %s", dkey.hex())
return False
spider = NodeSpiderCrawl(self.protocol, node, nearest, self.ksize, self.alpha)
nodes = await spider.find()
log.info("setting '%s' on %s", dkey.hex(), list(map(str, nodes)))
# if this node is close too, then store here as well
biggest = max([n.distance_to(node) for n in nodes])
if self.node.distance_to(node) < biggest:
self.storage[dkey] = value
results = [self.protocol.call_store(n, dkey, value) for n in nodes]
# return true only if at least one store call succeeded
return any(await asyncio.gather(*results))
def save_state(self, fname):
"""Save the state of this node (the alpha/ksize/id/immediate neighbors)
to a cache file with the given fname."""
log.info("Saving state to %s", fname)
data = {
"ksize": self.ksize,
"alpha": self.alpha,
"id": self.node.peer_id_bytes,
"neighbors": self.bootstrappable_neighbors(),
}
if not data["neighbors"]:
log.warning("No known neighbors, so not writing to cache.")
return
with open(fname, "wb") as file:
pickle.dump(data, file)
@classmethod
def load_state(cls, fname):
"""Load the state of this node (the alpha/ksize/id/immediate neighbors)
from a cache file with the given fname."""
log.info("Loading state from %s", fname)
with open(fname, "rb") as file:
data = pickle.load(file)
svr = KademliaServer(data["ksize"], data["alpha"], data["id"])
if data["neighbors"]:
svr.bootstrap(data["neighbors"])
return svr
def save_state_regularly(self, fname, frequency=600):
"""
Save the state of node with a given regularity to the given filename.
Args:
fname: File name to save retularly to
frequency: Frequency in seconds that the state should be saved.
By default, 10 minutes.
"""
self.save_state(fname)
loop = asyncio.get_event_loop()
self.save_state_loop = loop.call_later(
frequency, self.save_state_regularly, fname, frequency
)
def check_dht_value_type(value):
"""Checks to see if the type of the value is a valid type for placing in
the dht."""
typeset = [int, float, bool, str, bytes]
return type(value) in typeset

View File

@ -1,188 +0,0 @@
import asyncio
import logging
import random
from rpcudp.protocol import RPCProtocol
from .kad_peerinfo import create_kad_peerinfo
from .routing import RoutingTable
log = logging.getLogger(__name__)
class KademliaProtocol(RPCProtocol):
"""
There are four main RPCs in the Kademlia protocol PING, STORE, FIND_NODE,
FIND_VALUE.
- PING probes if a node is still online
- STORE instructs a node to store (key, value)
- FIND_NODE takes a 160-bit ID and gets back
(ip, udp_port, node_id) for k closest nodes to target
- FIND_VALUE behaves like FIND_NODE unless a value is stored.
"""
def __init__(self, source_node, storage, ksize):
RPCProtocol.__init__(self)
self.router = RoutingTable(self, ksize, source_node)
self.storage = storage
self.source_node = source_node
def get_refresh_ids(self):
"""Get ids to search for to keep old buckets up to date."""
ids = []
for bucket in self.router.lonely_buckets():
rid = random.randint(*bucket.range).to_bytes(20, byteorder="big")
ids.append(rid)
return ids
def rpc_stun(self, sender):
return sender
def rpc_ping(self, sender, nodeid):
source = create_kad_peerinfo(nodeid, sender[0], sender[1])
self.welcome_if_new(source)
return self.source_node.peer_id_bytes
def rpc_store(self, sender, nodeid, key, value):
source = create_kad_peerinfo(nodeid, sender[0], sender[1])
self.welcome_if_new(source)
log.debug(
"got a store request from %s, storing '%s'='%s'", sender, key.hex(), value
)
self.storage[key] = value
return True
def rpc_find_node(self, sender, nodeid, key):
log.info("finding neighbors of %i in local table", int(nodeid.hex(), 16))
source = create_kad_peerinfo(nodeid, sender[0], sender[1])
self.welcome_if_new(source)
node = create_kad_peerinfo(key)
neighbors = self.router.find_neighbors(node, exclude=source)
return list(map(tuple, neighbors))
def rpc_find_value(self, sender, nodeid, key):
source = create_kad_peerinfo(nodeid, sender[0], sender[1])
self.welcome_if_new(source)
value = self.storage.get(key, None)
if value is None:
return self.rpc_find_node(sender, nodeid, key)
return {"value": value}
def rpc_add_provider(self, sender, nodeid, key, provider_id):
"""rpc when receiving an add_provider call should validate received
PeerInfo matches sender nodeid if it does, receipient must store a
record in its datastore we store a map of content_id to peer_id (non
xor)"""
if nodeid == provider_id:
log.info(
"adding provider %s for key %s in local table", provider_id, str(key)
)
self.storage[key] = provider_id
return True
return False
def rpc_get_providers(self, sender, key):
"""rpc when receiving a get_providers call should look up key in data
store and respond with records plus a list of closer peers in its
routing table."""
providers = []
record = self.storage.get(key, None)
if record:
providers.append(record)
keynode = create_kad_peerinfo(key)
neighbors = self.router.find_neighbors(keynode)
for neighbor in neighbors:
if neighbor.peer_id_bytes != record:
providers.append(neighbor.peer_id_bytes)
return providers
async def call_find_node(self, node_to_ask, node_to_find):
address = (node_to_ask.ip, node_to_ask.port)
result = await self.find_node(
address, self.source_node.peer_id_bytes, node_to_find.peer_id_bytes
)
return self.handle_call_response(result, node_to_ask)
async def call_find_value(self, node_to_ask, node_to_find):
address = (node_to_ask.ip, node_to_ask.port)
result = await self.find_value(
address, self.source_node.peer_id_bytes, node_to_find.peer_id_bytes
)
return self.handle_call_response(result, node_to_ask)
async def call_ping(self, node_to_ask):
address = (node_to_ask.ip, node_to_ask.port)
result = await self.ping(address, self.source_node.peer_id_bytes)
return self.handle_call_response(result, node_to_ask)
async def call_store(self, node_to_ask, key, value):
address = (node_to_ask.ip, node_to_ask.port)
result = await self.store(address, self.source_node.peer_id_bytes, key, value)
return self.handle_call_response(result, node_to_ask)
async def call_add_provider(self, node_to_ask, key, provider_id):
address = (node_to_ask.ip, node_to_ask.port)
result = await self.add_provider(
address, self.source_node.peer_id_bytes, key, provider_id
)
return self.handle_call_response(result, node_to_ask)
async def call_get_providers(self, node_to_ask, key):
address = (node_to_ask.ip, node_to_ask.port)
result = await self.get_providers(address, key)
return self.handle_call_response(result, node_to_ask)
def welcome_if_new(self, node):
"""
Given a new node, send it all the keys/values it should be storing,
then add it to the routing table.
@param node: A new node that just joined (or that we just found out
about).
Process:
For each key in storage, get k closest nodes. If newnode is closer
than the furtherst in that list, and the node for this server
is closer than the closest in that list, then store the key/value
on the new node (per section 2.5 of the paper)
"""
if not self.router.is_new_node(node):
return
log.info("never seen %s before, adding to router", node)
for key, value in self.storage:
keynode = create_kad_peerinfo(key)
neighbors = self.router.find_neighbors(keynode)
if neighbors:
last = neighbors[-1].distance_to(keynode)
new_node_close = node.distance_to(keynode) < last
first = neighbors[0].distance_to(keynode)
this_closest = self.source_node.distance_to(keynode) < first
if not neighbors or (new_node_close and this_closest):
asyncio.ensure_future(self.call_store(node, key, value))
self.router.add_contact(node)
def handle_call_response(self, result, node):
"""
If we get a response, add the node to the routing table.
If we get no response, make sure it's removed from the routing
table.
"""
if not result[0]:
log.warning("no response from %s, removing from router", node)
self.router.remove_contact(node)
return result
log.info("got successful response from %s", node)
self.welcome_if_new(node)
return result

View File

@ -1,184 +0,0 @@
import asyncio
from collections import OrderedDict
import heapq
import operator
import time
from .utils import OrderedSet, bytes_to_bit_string, shared_prefix
class KBucket:
"""each node keeps a list of (ip, udp_port, node_id) for nodes of distance
between 2^i and 2^(i+1) this list that every node keeps is a k-bucket each
k-bucket implements a last seen eviction policy except that live nodes are
never removed."""
def __init__(self, rangeLower, rangeUpper, ksize):
self.range = (rangeLower, rangeUpper)
self.nodes = OrderedDict()
self.replacement_nodes = OrderedSet()
self.touch_last_updated()
self.ksize = ksize
def touch_last_updated(self):
self.last_updated = time.monotonic()
def get_nodes(self):
return list(self.nodes.values())
def split(self):
midpoint = (self.range[0] + self.range[1]) / 2
one = KBucket(self.range[0], midpoint, self.ksize)
two = KBucket(midpoint + 1, self.range[1], self.ksize)
for node in self.nodes.values():
bucket = one if node.xor_id <= midpoint else two
bucket.nodes[node.peer_id_bytes] = node
return (one, two)
def remove_node(self, node):
if node.peer_id_bytes not in self.nodes:
return
# delete node, and see if we can add a replacement
del self.nodes[node.peer_id_bytes]
if self.replacement_nodes:
newnode = self.replacement_nodes.pop()
self.nodes[newnode.peer_id_bytes] = newnode
def has_in_range(self, node):
return self.range[0] <= node.xor_id <= self.range[1]
def is_new_node(self, node):
return node.peer_id_bytes not in self.nodes
def add_node(self, node):
"""
Add a C{Node} to the C{KBucket}. Return True if successful, False if
the bucket is full.
If the bucket is full, keep track of node in a replacement list,
per section 4.1 of the paper.
"""
if node.peer_id_bytes in self.nodes:
del self.nodes[node.peer_id_bytes]
self.nodes[node.peer_id_bytes] = node
elif len(self) < self.ksize:
self.nodes[node.peer_id_bytes] = node
else:
self.replacement_nodes.push(node)
return False
return True
def depth(self):
vals = self.nodes.values()
sprefix = shared_prefix([bytes_to_bit_string(n.peer_id_bytes) for n in vals])
return len(sprefix)
def head(self):
return list(self.nodes.values())[0]
def __getitem__(self, node_id):
return self.nodes.get(node_id, None)
def __len__(self):
return len(self.nodes)
class TableTraverser:
def __init__(self, table, startNode):
index = table.get_bucket_for(startNode)
table.buckets[index].touch_last_updated()
self.current_nodes = table.buckets[index].get_nodes()
self.left_buckets = table.buckets[:index]
self.right_buckets = table.buckets[(index + 1) :]
self.left = True
def __iter__(self):
return self
def __next__(self):
"""Pop an item from the left subtree, then right, then left, etc."""
if self.current_nodes:
return self.current_nodes.pop()
if self.left and self.left_buckets:
self.current_nodes = self.left_buckets.pop().get_nodes()
self.left = False
return next(self)
if self.right_buckets:
self.current_nodes = self.right_buckets.pop(0).get_nodes()
self.left = True
return next(self)
raise StopIteration
class RoutingTable:
def __init__(self, protocol, ksize, node):
"""
@param node: The node that represents this server. It won't
be added to the routing table, but will be needed later to
determine which buckets to split or not.
"""
self.node = node
self.protocol = protocol
self.ksize = ksize
self.flush()
def flush(self):
self.buckets = [KBucket(0, 2 ** 160, self.ksize)]
def split_bucket(self, index):
one, two = self.buckets[index].split()
self.buckets[index] = one
self.buckets.insert(index + 1, two)
def lonely_buckets(self):
"""Get all of the buckets that haven't been updated in over an hour."""
hrago = time.monotonic() - 3600
return [b for b in self.buckets if b.last_updated < hrago]
def remove_contact(self, node):
index = self.get_bucket_for(node)
self.buckets[index].remove_node(node)
def is_new_node(self, node):
index = self.get_bucket_for(node)
return self.buckets[index].is_new_node(node)
def add_contact(self, node):
index = self.get_bucket_for(node)
bucket = self.buckets[index]
# this will succeed unless the bucket is full
if bucket.add_node(node):
return
# Per section 4.2 of paper, split if the bucket has the node
# in its range or if the depth is not congruent to 0 mod 5
if bucket.has_in_range(self.node) or bucket.depth() % 5 != 0:
self.split_bucket(index)
self.add_contact(node)
else:
asyncio.ensure_future(self.protocol.call_ping(bucket.head()))
def get_bucket_for(self, node):
"""Get the index of the bucket that the given node would fall into."""
for index, bucket in enumerate(self.buckets):
if node.xor_id < bucket.range[1]:
return index
# we should never be here, but make linter happy
return None
def find_neighbors(self, node, k=None, exclude=None):
k = k or self.ksize
nodes = []
for neighbor in TableTraverser(self, node):
notexcluded = exclude is None or not neighbor.same_home_as(exclude)
if neighbor.peer_id_bytes != node.peer_id_bytes and notexcluded:
heapq.heappush(nodes, (node.distance_to(neighbor), neighbor))
if len(nodes) == k:
break
return list(map(operator.itemgetter(1), heapq.nsmallest(k, nodes)))

View File

@ -1,78 +0,0 @@
// Record represents a dht record that contains a value
// for a key value pair
message Record {
// The key that references this record
bytes key = 1;
// The actual value this record is storing
bytes value = 2;
// Note: These fields were removed from the Record message
// hash of the authors public key
//optional string author = 3;
// A PKI signature for the key+value+author
//optional bytes signature = 4;
// Time the record was received, set by receiver
string timeReceived = 5;
};
message Message {
enum MessageType {
PUT_VALUE = 0;
GET_VALUE = 1;
ADD_PROVIDER = 2;
GET_PROVIDERS = 3;
FIND_NODE = 4;
PING = 5;
}
enum ConnectionType {
// sender does not have a connection to peer, and no extra information (default)
NOT_CONNECTED = 0;
// sender has a live connection to peer
CONNECTED = 1;
// sender recently connected to peer
CAN_CONNECT = 2;
// sender recently tried to connect to peer repeatedly but failed to connect
// ("try" here is loose, but this should signal "made strong effort, failed")
CANNOT_CONNECT = 3;
}
message Peer {
// ID of a given peer.
bytes id = 1;
// multiaddrs for a given peer
repeated bytes addrs = 2;
// used to signal the sender's connection capabilities to the peer
ConnectionType connection = 3;
}
// defines what type of message it is.
MessageType type = 1;
// defines what coral cluster level this query/response belongs to.
// in case we want to implement coral's cluster rings in the future.
int32 clusterLevelRaw = 10; // NOT USED
// Used to specify the key associated with this message.
// PUT_VALUE, GET_VALUE, ADD_PROVIDER, GET_PROVIDERS
bytes key = 2;
// Used to return a value
// PUT_VALUE, GET_VALUE
Record record = 3;
// Used to return peers closer to a key in a query
// GET_VALUE, GET_PROVIDERS, FIND_NODE
repeated Peer closerPeers = 8;
// Used to return Providers
// GET_VALUE, ADD_PROVIDER, GET_PROVIDERS
repeated Peer providerPeers = 9;
}

View File

@ -1,93 +0,0 @@
from abc import ABC, abstractmethod
from collections import OrderedDict
from itertools import takewhile
import operator
import time
class IStorage(ABC):
"""
Local storage for this node.
IStorage implementations of get must return the same type as put in
by set
"""
@abstractmethod
def __setitem__(self, key, value):
"""Set a key to the given value."""
@abstractmethod
def __getitem__(self, key):
"""
Get the given key.
If item doesn't exist, raises C{KeyError}
"""
@abstractmethod
def get(self, key, default=None):
"""
Get given key.
If not found, return default.
"""
@abstractmethod
def iter_older_than(self, seconds_old):
"""Return the an iterator over (key, value) tuples for items older than
the given seconds_old."""
@abstractmethod
def __iter__(self):
"""Get the iterator for this storage, should yield tuple of (key,
value)"""
class ForgetfulStorage(IStorage):
def __init__(self, ttl=604800):
"""By default, max age is a week."""
self.data = OrderedDict()
self.ttl = ttl
def __setitem__(self, key, value):
if key in self.data:
del self.data[key]
self.data[key] = (time.monotonic(), value)
self.cull()
def cull(self):
for _, _ in self.iter_older_than(self.ttl):
self.data.popitem(last=False)
def get(self, key, default=None):
self.cull()
if key in self.data:
return self[key]
return default
def __getitem__(self, key):
self.cull()
return self.data[key][1]
def __repr__(self):
self.cull()
return repr(self.data)
def iter_older_than(self, seconds_old):
min_birthday = time.monotonic() - seconds_old
zipped = self._triple_iter()
matches = takewhile(lambda r: min_birthday >= r[1], zipped)
return list(map(operator.itemgetter(0, 2), matches))
def _triple_iter(self):
ikeys = self.data.keys()
ibirthday = map(operator.itemgetter(0), self.data.values())
ivalues = map(operator.itemgetter(1), self.data.values())
return zip(ikeys, ibirthday, ivalues)
def __iter__(self):
self.cull()
ikeys = self.data.keys()
ivalues = map(operator.itemgetter(1), self.data.values())
return zip(ikeys, ivalues)

View File

@ -1,56 +0,0 @@
"""General catchall for functions that don't make sense as methods."""
import asyncio
import hashlib
import operator
async def gather_dict(dic):
cors = list(dic.values())
results = await asyncio.gather(*cors)
return dict(zip(dic.keys(), results))
def digest(string):
if not isinstance(string, bytes):
string = str(string).encode("utf8")
return hashlib.sha1(string).digest()
class OrderedSet(list):
"""
Acts like a list in all ways, except in the behavior of the.
:meth:`push` method.
"""
def push(self, thing):
"""
1. If the item exists in the list, it's removed
2. The item is pushed to the end of the list
"""
if thing in self:
self.remove(thing)
self.append(thing)
def shared_prefix(args):
"""
Find the shared prefix between the strings.
For instance:
sharedPrefix(['blahblah', 'blahwhat'])
returns 'blah'.
"""
i = 0
while i < min(map(len, args)):
if len(set(map(operator.itemgetter(i), args))) != 1:
break
i += 1
return args[0][:i]
def bytes_to_bit_string(bites):
bits = [bin(bite)[2:].rjust(8, "0") for bite in bites]
return "".join(bits)