Files
py-libp2p/libp2p/transport/quic/security.py
2025-08-30 14:08:53 +05:30

1025 lines
36 KiB
Python

"""
QUIC Security implementation for py-libp2p Module 5.
Implements libp2p TLS specification for QUIC transport with peer identity integration.
Based on go-libp2p and js-libp2p security patterns.
"""
from dataclasses import dataclass, field
import logging
import ssl
from typing import Any
from cryptography import x509
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import ec, rsa
from cryptography.hazmat.primitives.asymmetric.ec import EllipticCurvePrivateKey
from cryptography.hazmat.primitives.asymmetric.rsa import RSAPrivateKey
from cryptography.x509.base import Certificate
from cryptography.x509.extensions import Extension, UnrecognizedExtension
from cryptography.x509.oid import NameOID
from libp2p.crypto.keys import PrivateKey, PublicKey
from libp2p.crypto.serialization import deserialize_public_key
from libp2p.peer.id import ID
from .exceptions import (
QUICCertificateError,
QUICPeerVerificationError,
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# libp2p TLS Extension OID - Official libp2p specification
LIBP2P_TLS_EXTENSION_OID = x509.ObjectIdentifier("1.3.6.1.4.1.53594.1.1")
# Certificate validity period
CERTIFICATE_VALIDITY_DAYS = 365
CERTIFICATE_NOT_BEFORE_BUFFER = 3600 # 1 hour before now
@dataclass
@dataclass
class TLSConfig:
"""TLS configuration for QUIC transport with libp2p extensions."""
certificate: x509.Certificate
private_key: ec.EllipticCurvePrivateKey | rsa.RSAPrivateKey
peer_id: ID
def get_certificate_der(self) -> bytes:
"""Get certificate in DER format for external use."""
return self.certificate.public_bytes(serialization.Encoding.DER)
def get_private_key_der(self) -> bytes:
"""Get private key in DER format for external use."""
return self.private_key.private_bytes(
encoding=serialization.Encoding.DER,
format=serialization.PrivateFormat.PKCS8,
encryption_algorithm=serialization.NoEncryption(),
)
def get_certificate_pem(self) -> bytes:
"""Get certificate in PEM format."""
return self.certificate.public_bytes(serialization.Encoding.PEM)
def get_private_key_pem(self) -> bytes:
"""Get private key in PEM format."""
return self.private_key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.PKCS8,
encryption_algorithm=serialization.NoEncryption(),
)
class LibP2PExtensionHandler:
"""
Handles libp2p-specific TLS extensions for peer identity verification.
Based on libp2p TLS specification:
https://github.com/libp2p/specs/blob/master/tls/tls.md
"""
@staticmethod
def create_signed_key_extension(
libp2p_private_key: PrivateKey, cert_public_key: bytes
) -> bytes:
"""
Create the libp2p Public Key Extension with signed key proof.
The extension contains:
1. The libp2p public key
2. A signature proving ownership of the private key
Args:
libp2p_private_key: The libp2p identity private key
cert_public_key: The certificate's public key bytes
Returns:
ASN.1 encoded extension value
"""
try:
# Get the libp2p public key
libp2p_public_key = libp2p_private_key.get_public_key()
# Create the signature payload: "libp2p-tls-handshake:" + cert_public_key
signature_payload = b"libp2p-tls-handshake:" + cert_public_key
# Sign the payload with the libp2p private key
signature = libp2p_private_key.sign(signature_payload)
# Create the SignedKey structure (simplified ASN.1 encoding)
# In a full implementation, this would use proper ASN.1 encoding
public_key_bytes = libp2p_public_key.serialize()
# Simple encoding:
# [public_key_length][public_key][signature_length][signature]
extension_data = (
len(public_key_bytes).to_bytes(4, byteorder="big")
+ public_key_bytes
+ len(signature).to_bytes(4, byteorder="big")
+ signature
)
return extension_data
except Exception as e:
raise QUICCertificateError(
f"Failed to create signed key extension: {e}"
) from e
@staticmethod
def parse_signed_key_extension(
extension: Extension[Any],
) -> tuple[PublicKey, bytes]:
"""
Parse the libp2p Public Key Extension with support for all crypto types.
Handles Ed25519, Secp256k1, RSA, ECDSA, and ECC_P256 signature formats.
"""
try:
logger.debug(f"🔍 Extension type: {type(extension)}")
logger.debug(f"🔍 Extension.value type: {type(extension.value)}")
# Extract the raw bytes from the extension
if isinstance(extension.value, UnrecognizedExtension):
raw_bytes = extension.value.value
logger.debug(
"🔍 Extension is UnrecognizedExtension, using .value property"
)
else:
raw_bytes = extension.value
logger.debug("🔍 Extension.value is already bytes")
logger.debug(f"🔍 Total extension length: {len(raw_bytes)} bytes")
logger.debug(f"🔍 Extension hex (first 50 bytes): {raw_bytes[:50].hex()}")
if not isinstance(raw_bytes, bytes):
raise QUICCertificateError(f"Expected bytes, got {type(raw_bytes)}")
offset = 0
# Parse public key length and data
if len(raw_bytes) < 4:
raise QUICCertificateError("Extension too short for public key length")
public_key_length = int.from_bytes(
raw_bytes[offset : offset + 4], byteorder="big"
)
logger.debug(f"🔍 Public key length: {public_key_length} bytes")
offset += 4
if len(raw_bytes) < offset + public_key_length:
raise QUICCertificateError("Extension too short for public key data")
public_key_bytes = raw_bytes[offset : offset + public_key_length]
logger.debug(f"🔍 Public key data: {public_key_bytes.hex()}")
offset += public_key_length
# Parse signature length and data
if len(raw_bytes) < offset + 4:
raise QUICCertificateError("Extension too short for signature length")
signature_length = int.from_bytes(
raw_bytes[offset : offset + 4], byteorder="big"
)
logger.debug(f"🔍 Signature length: {signature_length} bytes")
offset += 4
if len(raw_bytes) < offset + signature_length:
raise QUICCertificateError("Extension too short for signature data")
signature_data = raw_bytes[offset : offset + signature_length]
logger.debug(f"🔍 Signature data length: {len(signature_data)} bytes")
logger.debug(
f"🔍 Signature data hex (first 20 bytes): {signature_data[:20].hex()}"
)
# Deserialize the public key to determine the crypto type
public_key = LibP2PKeyConverter.deserialize_public_key(public_key_bytes)
logger.debug(f"🔍 Successfully deserialized public key: {type(public_key)}")
# Extract signature based on key type
signature = LibP2PExtensionHandler._extract_signature_by_key_type(
public_key, signature_data
)
logger.debug(f"🔍 Final signature to return: {len(signature)} bytes")
logger.debug(
f"🔍 Final signature hex (first 20 bytes): {signature[:20].hex()}"
)
return public_key, signature
except Exception as e:
logger.debug(f"❌ Extension parsing failed: {e}")
import traceback
logger.debug(f"❌ Traceback: {traceback.format_exc()}")
raise QUICCertificateError(
f"Failed to parse signed key extension: {e}"
) from e
@staticmethod
def _extract_signature_by_key_type(
public_key: PublicKey, signature_data: bytes
) -> bytes:
"""
Extract the actual signature from signature_data based on the key type.
Different crypto libraries have different signature formats.
"""
if not hasattr(public_key, "get_type"):
logger.debug("⚠️ Public key has no get_type method, using signature as-is")
return signature_data
key_type = public_key.get_type()
key_type_name = key_type.name if hasattr(key_type, "name") else str(key_type)
logger.debug(f"🔍 Processing signature for key type: {key_type_name}")
# Handle different key types
if key_type_name == "Ed25519":
return LibP2PExtensionHandler._extract_ed25519_signature(signature_data)
elif key_type_name == "Secp256k1":
return LibP2PExtensionHandler._extract_secp256k1_signature(signature_data)
elif key_type_name == "RSA":
return LibP2PExtensionHandler._extract_rsa_signature(signature_data)
elif key_type_name in ["ECDSA", "ECC_P256"]:
return LibP2PExtensionHandler._extract_ecdsa_signature(signature_data)
else:
logger.debug(
f"⚠️ Unknown key type {key_type_name}, using generic extraction"
)
return LibP2PExtensionHandler._extract_generic_signature(signature_data)
@staticmethod
def _extract_ed25519_signature(signature_data: bytes) -> bytes:
"""Extract Ed25519 signature (must be exactly 64 bytes)."""
logger.debug("🔧 Extracting Ed25519 signature")
if len(signature_data) == 64:
logger.debug("✅ Ed25519 signature is already 64 bytes")
return signature_data
logger.debug(
f"⚠️ Ed25519 signature is {len(signature_data)} bytes, extracting 64 bytes"
)
# Look for the payload marker and extract signature before it
payload_marker = b"libp2p-tls-handshake:"
marker_index = signature_data.find(payload_marker)
if marker_index >= 64:
# The signature is likely the first 64 bytes before the payload
signature = signature_data[:64]
logger.debug("🔧 Using first 64 bytes as Ed25519 signature")
return signature
elif marker_index > 0 and marker_index == 64:
# Perfect case: signature is exactly before the marker
signature = signature_data[:marker_index]
logger.debug(f"🔧 Using {len(signature)} bytes before payload marker")
return signature
else:
# Fallback: try to extract first 64 bytes
if len(signature_data) >= 64:
signature = signature_data[:64]
logger.debug("🔧 Fallback: using first 64 bytes")
return signature
else:
logger.debug(
f"Cannot extract 64 bytes from {len(signature_data)} byte signature"
)
return signature_data
@staticmethod
def _extract_secp256k1_signature(signature_data: bytes) -> bytes:
"""
Extract Secp256k1 signature. Secp256k1 can use either DER-encoded
or raw format depending on the implementation.
"""
logger.debug("🔧 Extracting Secp256k1 signature")
# Look for payload marker to separate signature from payload
payload_marker = b"libp2p-tls-handshake:"
marker_index = signature_data.find(payload_marker)
if marker_index > 0:
signature = signature_data[:marker_index]
logger.debug(f"🔧 Using {len(signature)} bytes before payload marker")
# Check if it's DER-encoded (starts with 0x30)
if len(signature) >= 2 and signature[0] == 0x30:
logger.debug("🔍 Secp256k1 signature appears to be DER-encoded")
return LibP2PExtensionHandler._validate_der_signature(signature)
else:
logger.debug("🔍 Secp256k1 signature appears to be raw format")
return signature
else:
# No marker found, check if the whole data is DER-encoded
if len(signature_data) >= 2 and signature_data[0] == 0x30:
logger.debug(
"🔍 Secp256k1 signature appears to be DER-encoded (no marker)"
)
return LibP2PExtensionHandler._validate_der_signature(signature_data)
else:
logger.debug("🔍 Using Secp256k1 signature data as-is")
return signature_data
@staticmethod
def _extract_rsa_signature(signature_data: bytes) -> bytes:
"""
Extract RSA signature.
RSA signatures are typically raw bytes with length matching the key size.
"""
logger.debug("🔧 Extracting RSA signature")
# Look for payload marker to separate signature from payload
payload_marker = b"libp2p-tls-handshake:"
marker_index = signature_data.find(payload_marker)
if marker_index > 0:
signature = signature_data[:marker_index]
logger.debug(
f"🔧 Using {len(signature)} bytes before payload marker for RSA"
)
return signature
else:
logger.debug("🔍 Using RSA signature data as-is")
return signature_data
@staticmethod
def _extract_ecdsa_signature(signature_data: bytes) -> bytes:
"""
Extract ECDSA signature (typically DER-encoded ASN.1).
ECDSA signatures start with 0x30 (ASN.1 SEQUENCE).
"""
logger.debug("🔧 Extracting ECDSA signature")
# Look for payload marker to separate signature from payload
payload_marker = b"libp2p-tls-handshake:"
marker_index = signature_data.find(payload_marker)
if marker_index > 0:
signature = signature_data[:marker_index]
logger.debug(f"🔧 Using {len(signature)} bytes before payload marker")
# Validate DER encoding for ECDSA
if len(signature) >= 2 and signature[0] == 0x30:
return LibP2PExtensionHandler._validate_der_signature(signature)
else:
logger.debug(
"⚠️ ECDSA signature doesn't start with DER header, using as-is"
)
return signature
else:
# Check if the whole data is DER-encoded
if len(signature_data) >= 2 and signature_data[0] == 0x30:
logger.debug("🔍 ECDSA signature appears to be DER-encoded (no marker)")
return LibP2PExtensionHandler._validate_der_signature(signature_data)
else:
logger.debug("🔍 Using ECDSA signature data as-is")
return signature_data
@staticmethod
def _extract_generic_signature(signature_data: bytes) -> bytes:
"""
Generic signature extraction for unknown key types.
Tries to detect DER encoding or extract based on payload marker.
"""
logger.debug("🔧 Extracting signature using generic method")
# Look for payload marker to separate signature from payload
payload_marker = b"libp2p-tls-handshake:"
marker_index = signature_data.find(payload_marker)
if marker_index > 0:
signature = signature_data[:marker_index]
logger.debug(f"🔧 Using {len(signature)} bytes before payload marker")
# Check if it's DER-encoded
if len(signature) >= 2 and signature[0] == 0x30:
return LibP2PExtensionHandler._validate_der_signature(signature)
else:
return signature
else:
# Check if the whole data is DER-encoded
if len(signature_data) >= 2 and signature_data[0] == 0x30:
logger.debug(
"🔍 Generic signature appears to be DER-encoded (no marker)"
)
return LibP2PExtensionHandler._validate_der_signature(signature_data)
else:
logger.debug("🔍 Using signature data as-is")
return signature_data
@staticmethod
def _validate_der_signature(signature: bytes) -> bytes:
"""
Validate and potentially fix DER-encoded signatures.
DER signatures have the format: 30 [length] ...
"""
if len(signature) < 2:
return signature
if signature[0] != 0x30:
logger.debug("⚠️ Signature doesn't start with DER SEQUENCE tag")
return signature
# Get the DER length
der_length = signature[1]
expected_total_length = der_length + 2
logger.debug(
f"🔍 DER signature: length byte = {der_length}, "
f"expected total = {expected_total_length}, "
f"actual length = {len(signature)}"
)
if len(signature) == expected_total_length:
logger.debug("✅ DER signature length is correct")
return signature
elif len(signature) > expected_total_length:
logger.debug(
"Truncating DER signature from "
f"{len(signature)} to {expected_total_length} bytes"
)
return signature[:expected_total_length]
else:
logger.debug("DER signature is shorter than expected, using as-is")
return signature
class LibP2PKeyConverter:
"""
Converts between libp2p key formats and cryptography library formats.
Handles different key types: Ed25519, Secp256k1, RSA, ECDSA.
"""
@staticmethod
def libp2p_to_tls_private_key(
libp2p_key: PrivateKey,
) -> ec.EllipticCurvePrivateKey | rsa.RSAPrivateKey:
"""
Convert libp2p private key to TLS-compatible private key.
For certificate generation, we create a separate ephemeral key
rather than using the libp2p identity key directly.
"""
# For QUIC, we prefer ECDSA keys for smaller certificates
# Generate ephemeral P-256 key for certificate signing
private_key = ec.generate_private_key(ec.SECP256R1())
return private_key
@staticmethod
def serialize_public_key(public_key: PublicKey) -> bytes:
"""Serialize libp2p public key to bytes."""
return public_key.serialize()
@staticmethod
def deserialize_public_key(key_bytes: bytes) -> PublicKey:
"""
Deserialize libp2p public key from protobuf bytes.
Args:
key_bytes: Protobuf-serialized public key bytes
Returns:
Deserialized PublicKey instance
"""
try:
# Use the official libp2p deserialization function
return deserialize_public_key(key_bytes)
except Exception as e:
raise QUICCertificateError(f"Failed to deserialize public key: {e}") from e
class CertificateGenerator:
"""
Generates X.509 certificates with libp2p peer identity extensions.
Follows libp2p TLS specification for QUIC transport.
"""
def __init__(self) -> None:
self.extension_handler = LibP2PExtensionHandler()
self.key_converter = LibP2PKeyConverter()
def generate_certificate(
self,
libp2p_private_key: PrivateKey,
peer_id: ID,
validity_days: int = CERTIFICATE_VALIDITY_DAYS,
) -> TLSConfig:
"""
Generate a TLS certificate with embedded libp2p peer identity.
Fixed to use datetime objects for validity periods.
Args:
libp2p_private_key: The libp2p identity private key
peer_id: The libp2p peer ID
validity_days: Certificate validity period in days
Returns:
TLSConfig with certificate and private key
Raises:
QUICCertificateError: If certificate generation fails
"""
try:
# Generate ephemeral private key for certificate
cert_private_key = self.key_converter.libp2p_to_tls_private_key(
libp2p_private_key
)
cert_public_key = cert_private_key.public_key()
# Get certificate public key bytes for extension
cert_public_key_bytes = cert_public_key.public_bytes(
encoding=serialization.Encoding.DER,
format=serialization.PublicFormat.SubjectPublicKeyInfo,
)
# Create libp2p extension with signed key proof
extension_data = self.extension_handler.create_signed_key_extension(
libp2p_private_key, cert_public_key_bytes
)
from datetime import datetime, timedelta, timezone
now = datetime.now(timezone.utc)
not_before = now - timedelta(minutes=1)
not_after = now + timedelta(days=validity_days)
# Generate serial number
serial_number = int(now.timestamp())
certificate = (
x509.CertificateBuilder()
.subject_name(
x509.Name(
[x509.NameAttribute(NameOID.COMMON_NAME, peer_id.to_base58())] # type: ignore
)
)
.issuer_name(
x509.Name(
[x509.NameAttribute(NameOID.COMMON_NAME, peer_id.to_base58())] # type: ignore
)
)
.public_key(cert_public_key)
.serial_number(serial_number)
.not_valid_before(not_before)
.not_valid_after(not_after)
.add_extension(
x509.UnrecognizedExtension(
oid=LIBP2P_TLS_EXTENSION_OID, value=extension_data
),
critical=False,
)
.sign(cert_private_key, hashes.SHA256())
)
logger.info(f"Generated libp2p TLS certificate for peer {peer_id}")
print(f"Certificate valid from {not_before} to {not_after}")
return TLSConfig(
certificate=certificate, private_key=cert_private_key, peer_id=peer_id
)
except Exception as e:
raise QUICCertificateError(f"Failed to generate certificate: {e}") from e
class PeerAuthenticator:
"""
Authenticates remote peers using libp2p TLS certificates.
Validates both TLS certificate integrity and libp2p peer identity.
"""
def __init__(self) -> None:
self.extension_handler = LibP2PExtensionHandler()
def verify_peer_certificate(
self, certificate: x509.Certificate, expected_peer_id: ID | None = None
) -> ID:
"""
Verify a peer's TLS certificate and extract/validate peer identity.
Args:
certificate: The peer's TLS certificate
expected_peer_id: Expected peer ID (for outbound connections)
Returns:
The verified peer ID
Raises:
QUICPeerVerificationError: If verification fails
"""
try:
# Extract libp2p extension
libp2p_extension = None
for extension in certificate.extensions:
if extension.oid == LIBP2P_TLS_EXTENSION_OID:
libp2p_extension = extension
break
if not libp2p_extension:
raise QUICPeerVerificationError("Certificate missing libp2p extension")
assert libp2p_extension.value is not None
print(f"Extension type: {type(libp2p_extension)}")
print(f"Extension value type: {type(libp2p_extension.value)}")
if hasattr(libp2p_extension.value, "__len__"):
print(f"Extension value length: {len(libp2p_extension.value)}")
print(f"Extension value: {libp2p_extension.value}")
# Parse the extension to get public key and signature
public_key, signature = self.extension_handler.parse_signed_key_extension(
libp2p_extension
)
# Get certificate public key for signature verification
cert_public_key_bytes = certificate.public_key().public_bytes(
encoding=serialization.Encoding.DER,
format=serialization.PublicFormat.SubjectPublicKeyInfo,
)
# Verify the signature proves ownership of the libp2p private key
signature_payload = b"libp2p-tls-handshake:" + cert_public_key_bytes
try:
public_key.verify(signature_payload, signature)
except Exception as e:
raise QUICPeerVerificationError(
f"Invalid signature in libp2p extension: {e}"
)
# Derive peer ID from public key
derived_peer_id = ID.from_pubkey(public_key)
# Verify against expected peer ID if provided
if expected_peer_id and derived_peer_id != expected_peer_id:
print(f"Expected Peer id: {expected_peer_id}")
print(f"Derived Peer ID: {derived_peer_id}")
raise QUICPeerVerificationError(
f"Peer ID mismatch: expected {expected_peer_id}, "
f"got {derived_peer_id}"
)
logger.info(f"Successfully verified peer certificate for {derived_peer_id}")
return derived_peer_id
except QUICPeerVerificationError:
raise
except Exception as e:
raise QUICPeerVerificationError(
f"Certificate verification failed: {e}"
) from e
@dataclass
class QUICTLSSecurityConfig:
"""
Type-safe TLS security configuration for QUIC transport.
"""
# Core TLS components (required)
certificate: Certificate
private_key: EllipticCurvePrivateKey | RSAPrivateKey
# Certificate chain (optional)
certificate_chain: list[Certificate] = field(default_factory=list)
# ALPN protocols
alpn_protocols: list[str] = field(default_factory=lambda: ["libp2p"])
# TLS verification settings
verify_mode: ssl.VerifyMode = ssl.CERT_NONE
check_hostname: bool = False
request_client_certificate: bool = False
# Optional peer ID for validation
peer_id: ID | None = None
# Configuration metadata
is_client_config: bool = False
config_name: str | None = None
def __post_init__(self) -> None:
"""Validate configuration after initialization."""
self._validate()
def _validate(self) -> None:
"""Validate the TLS configuration."""
if self.certificate is None:
raise ValueError("Certificate is required")
if self.private_key is None:
raise ValueError("Private key is required")
if not isinstance(self.certificate, x509.Certificate):
raise TypeError(
f"Certificate must be x509.Certificate, got {type(self.certificate)}"
)
if not isinstance(
self.private_key, (ec.EllipticCurvePrivateKey, rsa.RSAPrivateKey)
):
raise TypeError(
f"Private key must be EC or RSA key, got {type(self.private_key)}"
)
if not self.alpn_protocols:
raise ValueError("At least one ALPN protocol is required")
def validate_certificate_key_match(self) -> bool:
"""
Validate that the certificate and private key match.
Returns:
True if certificate and private key match
"""
try:
from cryptography.hazmat.primitives import serialization
# Get public keys from both certificate and private key
cert_public_key = self.certificate.public_key()
private_public_key = self.private_key.public_key()
# Compare their PEM representations
cert_pub_pem = cert_public_key.public_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo,
)
private_pub_pem = private_public_key.public_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo,
)
return cert_pub_pem == private_pub_pem
except Exception:
return False
def has_libp2p_extension(self) -> bool:
"""
Check if the certificate has the required libp2p extension.
Returns:
True if libp2p extension is present
"""
try:
for ext in self.certificate.extensions:
if ext.oid == LIBP2P_TLS_EXTENSION_OID:
return True
return False
except Exception:
return False
def is_certificate_valid(self) -> bool:
"""
Check if the certificate is currently valid (not expired).
Returns:
True if certificate is valid
"""
try:
from datetime import datetime, timezone
now = datetime.now(timezone.utc)
not_before = self.certificate.not_valid_before_utc
not_after = self.certificate.not_valid_after_utc
return not_before <= now <= not_after
except Exception:
return False
def get_certificate_info(self) -> dict[Any, Any]:
"""
Get certificate information for debugging.
Returns:
Dictionary with certificate details
"""
try:
return {
"subject": str(self.certificate.subject),
"issuer": str(self.certificate.issuer),
"serial_number": self.certificate.serial_number,
"not_valid_before_utc": self.certificate.not_valid_before_utc,
"not_valid_after_utc": self.certificate.not_valid_after_utc,
"has_libp2p_extension": self.has_libp2p_extension(),
"is_valid": self.is_certificate_valid(),
"certificate_key_match": self.validate_certificate_key_match(),
}
except Exception as e:
return {"error": str(e)}
def debug_config(self) -> None:
"""Print debugging information about this configuration."""
print(f"=== TLS Security Config Debug ({self.config_name or 'unnamed'}) ===")
print(f"Is client config: {self.is_client_config}")
print(f"ALPN protocols: {self.alpn_protocols}")
print(f"Verify mode: {self.verify_mode}")
print(f"Check hostname: {self.check_hostname}")
print(f"Certificate chain length: {len(self.certificate_chain)}")
cert_info: dict[Any, Any] = self.get_certificate_info()
for key, value in cert_info.items():
print(f"Certificate {key}: {value}")
print(f"Private key type: {type(self.private_key).__name__}")
if hasattr(self.private_key, "key_size"):
print(f"Private key size: {self.private_key.key_size}")
def create_server_tls_config(
certificate: Certificate,
private_key: EllipticCurvePrivateKey | RSAPrivateKey,
peer_id: ID | None = None,
**kwargs: Any,
) -> QUICTLSSecurityConfig:
"""
Create a server TLS configuration.
Args:
certificate: X.509 certificate
private_key: Private key corresponding to certificate
peer_id: Optional peer ID for validation
**kwargs: Additional configuration parameters
Returns:
Server TLS configuration
"""
return QUICTLSSecurityConfig(
certificate=certificate,
private_key=private_key,
peer_id=peer_id,
is_client_config=False,
config_name="server",
verify_mode=ssl.CERT_NONE,
check_hostname=False,
request_client_certificate=True,
**kwargs,
)
def create_client_tls_config(
certificate: Certificate,
private_key: EllipticCurvePrivateKey | RSAPrivateKey,
peer_id: ID | None = None,
**kwargs: Any,
) -> QUICTLSSecurityConfig:
"""
Create a client TLS configuration.
Args:
certificate: X.509 certificate
private_key: Private key corresponding to certificate
peer_id: Optional peer ID for validation
**kwargs: Additional configuration parameters
Returns:
Client TLS configuration
"""
return QUICTLSSecurityConfig(
certificate=certificate,
private_key=private_key,
peer_id=peer_id,
is_client_config=True,
config_name="client",
verify_mode=ssl.CERT_NONE,
check_hostname=False,
**kwargs,
)
class QUICTLSConfigManager:
"""
Manages TLS configuration for QUIC transport with libp2p security.
Integrates with aioquic's TLS configuration system.
"""
def __init__(self, libp2p_private_key: PrivateKey, peer_id: ID) -> None:
self.libp2p_private_key = libp2p_private_key
self.peer_id = peer_id
self.certificate_generator = CertificateGenerator()
self.peer_authenticator = PeerAuthenticator()
# Generate certificate for this peer
self.tls_config = self.certificate_generator.generate_certificate(
libp2p_private_key, peer_id
)
def create_server_config(self) -> QUICTLSSecurityConfig:
"""
Create server configuration using the new class-based approach.
Returns:
QUICTLSSecurityConfig instance for server
"""
config = create_server_tls_config(
certificate=self.tls_config.certificate,
private_key=self.tls_config.private_key,
peer_id=self.peer_id,
)
print("🔧 SECURITY: Created server config")
return config
def create_client_config(self) -> QUICTLSSecurityConfig:
"""
Create client configuration using the new class-based approach.
Returns:
QUICTLSSecurityConfig instance for client
"""
config = create_client_tls_config(
certificate=self.tls_config.certificate,
private_key=self.tls_config.private_key,
peer_id=self.peer_id,
)
print("🔧 SECURITY: Created client config")
return config
def verify_peer_identity(
self, peer_certificate: x509.Certificate, expected_peer_id: ID | None = None
) -> ID:
"""
Verify remote peer's identity from their TLS certificate.
Args:
peer_certificate: Remote peer's TLS certificate
expected_peer_id: Expected peer ID (for outbound connections)
Returns:
Verified peer ID
"""
return self.peer_authenticator.verify_peer_certificate(
peer_certificate, expected_peer_id
)
def get_local_peer_id(self) -> ID:
"""Get the local peer ID."""
return self.peer_id
# Factory function for creating QUIC security transport
def create_quic_security_transport(
libp2p_private_key: PrivateKey, peer_id: ID
) -> QUICTLSConfigManager:
"""
Factory function to create QUIC security transport.
Args:
libp2p_private_key: The libp2p identity private key
peer_id: The libp2p peer ID
Returns:
Configured QUIC TLS manager
"""
return QUICTLSConfigManager(libp2p_private_key, peer_id)
# Legacy compatibility functions for existing code
def generate_libp2p_tls_config(private_key: PrivateKey, peer_id: ID) -> TLSConfig:
"""
Legacy function for compatibility with existing transport code.
Args:
private_key: libp2p private key
peer_id: libp2p peer ID
Returns:
TLS configuration
"""
generator = CertificateGenerator()
return generator.generate_certificate(private_key, peer_id)
def cleanup_tls_config(config: TLSConfig) -> None:
"""
Clean up TLS configuration.
For the new implementation, this is mostly a no-op since we don't use
temporary files, but kept for compatibility.
"""
# New implementation doesn't use temporary files
print("TLS config cleanup completed")