Add enhanced vfsreadlat BCC example with live plotly and dash graphs on browser

This commit is contained in:
Pragyansh Chaturvedi
2025-10-21 05:36:59 +05:30
parent e98d5684ea
commit 798f07986a
3 changed files with 479 additions and 0 deletions

View File

@ -0,0 +1,101 @@
"""BPF program for tracing VFS read latency."""
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime, pid
from pythonbpf.maps import HashMap, PerfEventArray
from ctypes import c_void_p, c_uint64
import argparse
from data_collector import LatencyCollector
from dashboard import LatencyDashboard
@bpf
@struct
class latency_event:
pid: c_uint64
delta_us: c_uint64
@bpf
@map
def start() -> HashMap:
"""Map to store start timestamps by PID."""
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)
@bpf
@map
def events() -> PerfEventArray:
"""Perf event array for sending latency events to userspace."""
return PerfEventArray(key_size=c_uint64, value_size=c_uint64)
@bpf
@section("kprobe/vfs_read")
def do_entry(ctx: c_void_p) -> c_uint64:
"""Record start time when vfs_read is called."""
p, ts = pid(), ktime()
start.update(p, ts)
return 0 # type: ignore [return-value]
@bpf
@section("kretprobe/vfs_read")
def do_return(ctx: c_void_p) -> c_uint64:
"""Calculate and record latency when vfs_read returns."""
p = pid()
tsp = start.lookup(p)
if tsp:
delta_ns = ktime() - tsp
# Only track latencies > 1 microsecond
if delta_ns > 1000:
evt = latency_event()
evt.pid, evt.delta_us = p, delta_ns // 1000
events.output(evt)
start.delete(p)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Monitor VFS read latency with live dashboard"
)
parser.add_argument(
"--host", default="0.0.0.0", help="Dashboard host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=8050, help="Dashboard port (default: 8050)"
)
parser.add_argument(
"--buffer", type=int, default=10000, help="Recent data buffer size"
)
return parser.parse_args()
args = parse_args()
# Load BPF program
print("Loading BPF program...")
b = BPF()
b.load()
b.attach_all()
print("✅ BPF program loaded and attached")
# Setup data collector
collector = LatencyCollector(b, buffer_size=args.buffer)
collector.start()
# Create and run dashboard
dashboard = LatencyDashboard(collector)
dashboard.run(host=args.host, port=args.port)