mirror of
https://github.com/varun-r-mallya/Python-BPF.git
synced 2025-12-31 21:06:25 +00:00
Add enhanced vfsreadlat BCC example with live plotly and dash graphs on browser
This commit is contained in:
101
BCC-Examples/vfsreadlat_plotly/bpf_program.py
Normal file
101
BCC-Examples/vfsreadlat_plotly/bpf_program.py
Normal file
@ -0,0 +1,101 @@
|
|||||||
|
"""BPF program for tracing VFS read latency."""
|
||||||
|
|
||||||
|
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
|
||||||
|
from pythonbpf.helper import ktime, pid
|
||||||
|
from pythonbpf.maps import HashMap, PerfEventArray
|
||||||
|
from ctypes import c_void_p, c_uint64
|
||||||
|
import argparse
|
||||||
|
from data_collector import LatencyCollector
|
||||||
|
from dashboard import LatencyDashboard
|
||||||
|
|
||||||
|
|
||||||
|
@bpf
|
||||||
|
@struct
|
||||||
|
class latency_event:
|
||||||
|
pid: c_uint64
|
||||||
|
delta_us: c_uint64
|
||||||
|
|
||||||
|
|
||||||
|
@bpf
|
||||||
|
@map
|
||||||
|
def start() -> HashMap:
|
||||||
|
"""Map to store start timestamps by PID."""
|
||||||
|
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)
|
||||||
|
|
||||||
|
|
||||||
|
@bpf
|
||||||
|
@map
|
||||||
|
def events() -> PerfEventArray:
|
||||||
|
"""Perf event array for sending latency events to userspace."""
|
||||||
|
return PerfEventArray(key_size=c_uint64, value_size=c_uint64)
|
||||||
|
|
||||||
|
|
||||||
|
@bpf
|
||||||
|
@section("kprobe/vfs_read")
|
||||||
|
def do_entry(ctx: c_void_p) -> c_uint64:
|
||||||
|
"""Record start time when vfs_read is called."""
|
||||||
|
p, ts = pid(), ktime()
|
||||||
|
start.update(p, ts)
|
||||||
|
return 0 # type: ignore [return-value]
|
||||||
|
|
||||||
|
|
||||||
|
@bpf
|
||||||
|
@section("kretprobe/vfs_read")
|
||||||
|
def do_return(ctx: c_void_p) -> c_uint64:
|
||||||
|
"""Calculate and record latency when vfs_read returns."""
|
||||||
|
p = pid()
|
||||||
|
tsp = start.lookup(p)
|
||||||
|
|
||||||
|
if tsp:
|
||||||
|
delta_ns = ktime() - tsp
|
||||||
|
|
||||||
|
# Only track latencies > 1 microsecond
|
||||||
|
if delta_ns > 1000:
|
||||||
|
evt = latency_event()
|
||||||
|
evt.pid, evt.delta_us = p, delta_ns // 1000
|
||||||
|
events.output(evt)
|
||||||
|
|
||||||
|
start.delete(p)
|
||||||
|
|
||||||
|
return 0 # type: ignore [return-value]
|
||||||
|
|
||||||
|
|
||||||
|
@bpf
|
||||||
|
@bpfglobal
|
||||||
|
def LICENSE() -> str:
|
||||||
|
return "GPL"
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
"""Parse command line arguments."""
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Monitor VFS read latency with live dashboard"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--host", default="0.0.0.0", help="Dashboard host (default: 0.0.0.0)"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--port", type=int, default=8050, help="Dashboard port (default: 8050)"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--buffer", type=int, default=10000, help="Recent data buffer size"
|
||||||
|
)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
args = parse_args()
|
||||||
|
|
||||||
|
# Load BPF program
|
||||||
|
print("Loading BPF program...")
|
||||||
|
b = BPF()
|
||||||
|
b.load()
|
||||||
|
b.attach_all()
|
||||||
|
print("✅ BPF program loaded and attached")
|
||||||
|
|
||||||
|
# Setup data collector
|
||||||
|
collector = LatencyCollector(b, buffer_size=args.buffer)
|
||||||
|
collector.start()
|
||||||
|
|
||||||
|
# Create and run dashboard
|
||||||
|
dashboard = LatencyDashboard(collector)
|
||||||
|
dashboard.run(host=args.host, port=args.port)
|
||||||
282
BCC-Examples/vfsreadlat_plotly/dashboard.py
Normal file
282
BCC-Examples/vfsreadlat_plotly/dashboard.py
Normal file
@ -0,0 +1,282 @@
|
|||||||
|
"""Plotly Dash dashboard for visualizing latency data."""
|
||||||
|
|
||||||
|
import dash
|
||||||
|
from dash import dcc, html
|
||||||
|
from dash.dependencies import Input, Output
|
||||||
|
import plotly.graph_objects as go
|
||||||
|
from plotly.subplots import make_subplots
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class LatencyDashboard:
|
||||||
|
"""Interactive dashboard for latency visualization."""
|
||||||
|
|
||||||
|
def __init__(self, collector, title: str = "VFS Read Latency Monitor"):
|
||||||
|
self.collector = collector
|
||||||
|
self.app = dash.Dash(__name__)
|
||||||
|
self.app.title = title
|
||||||
|
self._setup_layout()
|
||||||
|
self._setup_callbacks()
|
||||||
|
|
||||||
|
def _setup_layout(self):
|
||||||
|
"""Create dashboard layout."""
|
||||||
|
self.app.layout = html.Div(
|
||||||
|
[
|
||||||
|
html.H1(
|
||||||
|
"🔥 VFS Read Latency Dashboard",
|
||||||
|
style={
|
||||||
|
"textAlign": "center",
|
||||||
|
"color": "#2c3e50",
|
||||||
|
"marginBottom": 20,
|
||||||
|
},
|
||||||
|
),
|
||||||
|
# Stats cards
|
||||||
|
html.Div(
|
||||||
|
[
|
||||||
|
self._create_stat_card(
|
||||||
|
"total-samples", "📊 Total Samples", "#3498db"
|
||||||
|
),
|
||||||
|
self._create_stat_card(
|
||||||
|
"mean-latency", "⚡ Mean Latency", "#e74c3c"
|
||||||
|
),
|
||||||
|
self._create_stat_card(
|
||||||
|
"p99-latency", "🔥 P99 Latency", "#f39c12"
|
||||||
|
),
|
||||||
|
],
|
||||||
|
style={
|
||||||
|
"display": "flex",
|
||||||
|
"justifyContent": "space-around",
|
||||||
|
"marginBottom": 30,
|
||||||
|
},
|
||||||
|
),
|
||||||
|
# Graphs - ✅ Make sure these IDs match the callback outputs
|
||||||
|
dcc.Graph(id="dual-histogram", style={"height": "450px"}),
|
||||||
|
dcc.Graph(id="log2-buckets", style={"height": "350px"}),
|
||||||
|
dcc.Graph(id="timeseries-graph", style={"height": "300px"}),
|
||||||
|
# Auto-update
|
||||||
|
dcc.Interval(id="interval-component", interval=1000, n_intervals=0),
|
||||||
|
],
|
||||||
|
style={"padding": 20, "fontFamily": "Arial, sans-serif"},
|
||||||
|
)
|
||||||
|
|
||||||
|
def _create_stat_card(self, id_name: str, title: str, color: str):
|
||||||
|
"""Create a statistics card."""
|
||||||
|
return html.Div(
|
||||||
|
[
|
||||||
|
html.H3(title, style={"color": color}),
|
||||||
|
html.H2(id=id_name, style={"fontSize": 48, "color": "#2c3e50"}),
|
||||||
|
],
|
||||||
|
className="stat-box",
|
||||||
|
style={
|
||||||
|
"background": "white",
|
||||||
|
"padding": 20,
|
||||||
|
"borderRadius": 10,
|
||||||
|
"boxShadow": "0 4px 6px rgba(0,0,0,0.1)",
|
||||||
|
"textAlign": "center",
|
||||||
|
"flex": 1,
|
||||||
|
"margin": "0 10px",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
def _setup_callbacks(self):
|
||||||
|
"""Setup dashboard callbacks."""
|
||||||
|
|
||||||
|
@self.app.callback(
|
||||||
|
[
|
||||||
|
Output("total-samples", "children"),
|
||||||
|
Output("mean-latency", "children"),
|
||||||
|
Output("p99-latency", "children"),
|
||||||
|
Output("dual-histogram", "figure"), # ✅ Match layout IDs
|
||||||
|
Output("log2-buckets", "figure"), # ✅ Match layout IDs
|
||||||
|
Output("timeseries-graph", "figure"), # ✅ Match layout IDs
|
||||||
|
],
|
||||||
|
[Input("interval-component", "n_intervals")],
|
||||||
|
)
|
||||||
|
def update_dashboard(n):
|
||||||
|
stats = self.collector.get_stats()
|
||||||
|
|
||||||
|
if stats.total == 0:
|
||||||
|
return self._empty_state()
|
||||||
|
|
||||||
|
return (
|
||||||
|
f"{stats.total:,}",
|
||||||
|
f"{stats.mean:.1f} µs",
|
||||||
|
f"{stats.p99:.1f} µs",
|
||||||
|
self._create_dual_histogram(),
|
||||||
|
self._create_log2_buckets(),
|
||||||
|
self._create_timeseries(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def _empty_state(self):
|
||||||
|
"""Return empty state for dashboard."""
|
||||||
|
empty_fig = go.Figure()
|
||||||
|
empty_fig.update_layout(
|
||||||
|
title="Waiting for data... Generate some disk I/O!", template="plotly_white"
|
||||||
|
)
|
||||||
|
# ✅ Return 6 values (3 stats + 3 figures)
|
||||||
|
return "0", "0 µs", "0 µs", empty_fig, empty_fig, empty_fig
|
||||||
|
|
||||||
|
def _create_dual_histogram(self) -> go.Figure:
|
||||||
|
"""Create side-by-side linear and log2 histograms."""
|
||||||
|
latencies = self.collector.get_all_latencies()
|
||||||
|
|
||||||
|
# Create subplots
|
||||||
|
fig = make_subplots(
|
||||||
|
rows=1,
|
||||||
|
cols=2,
|
||||||
|
subplot_titles=("Linear Scale", "Log2 Scale"),
|
||||||
|
horizontal_spacing=0.12,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Linear histogram
|
||||||
|
fig.add_trace(
|
||||||
|
go.Histogram(
|
||||||
|
x=latencies,
|
||||||
|
nbinsx=50,
|
||||||
|
marker_color="rgb(55, 83, 109)",
|
||||||
|
opacity=0.75,
|
||||||
|
name="Linear",
|
||||||
|
),
|
||||||
|
row=1,
|
||||||
|
col=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Log2 histogram
|
||||||
|
log2_latencies = np.log2(latencies + 1) # +1 to avoid log2(0)
|
||||||
|
fig.add_trace(
|
||||||
|
go.Histogram(
|
||||||
|
x=log2_latencies,
|
||||||
|
nbinsx=30,
|
||||||
|
marker_color="rgb(243, 156, 18)",
|
||||||
|
opacity=0.75,
|
||||||
|
name="Log2",
|
||||||
|
),
|
||||||
|
row=1,
|
||||||
|
col=2,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Update axes
|
||||||
|
fig.update_xaxes(title_text="Latency (µs)", row=1, col=1)
|
||||||
|
fig.update_xaxes(title_text="log2(Latency in µs)", row=1, col=2)
|
||||||
|
fig.update_yaxes(title_text="Count", row=1, col=1)
|
||||||
|
fig.update_yaxes(title_text="Count", row=1, col=2)
|
||||||
|
|
||||||
|
fig.update_layout(
|
||||||
|
title_text="📊 Latency Distribution (Linear vs Log2)",
|
||||||
|
template="plotly_white",
|
||||||
|
showlegend=False,
|
||||||
|
height=450,
|
||||||
|
)
|
||||||
|
|
||||||
|
return fig
|
||||||
|
|
||||||
|
def _create_log2_buckets(self) -> go.Figure:
|
||||||
|
"""Create bar chart of log2 buckets (like BCC histogram)."""
|
||||||
|
buckets = self.collector.get_histogram_buckets()
|
||||||
|
|
||||||
|
if not buckets:
|
||||||
|
fig = go.Figure()
|
||||||
|
fig.update_layout(
|
||||||
|
title="🔥 Log2 Histogram - Waiting for data...", template="plotly_white"
|
||||||
|
)
|
||||||
|
return fig
|
||||||
|
|
||||||
|
# Sort buckets
|
||||||
|
sorted_buckets = sorted(buckets.keys())
|
||||||
|
counts = [buckets[b] for b in sorted_buckets]
|
||||||
|
|
||||||
|
# Create labels (e.g., "8-16µs", "16-32µs")
|
||||||
|
labels = []
|
||||||
|
hover_text = []
|
||||||
|
for bucket in sorted_buckets:
|
||||||
|
lower = 2**bucket
|
||||||
|
upper = 2 ** (bucket + 1)
|
||||||
|
labels.append(f"{lower}-{upper}")
|
||||||
|
|
||||||
|
# Calculate percentage
|
||||||
|
total = sum(counts)
|
||||||
|
pct = (buckets[bucket] / total) * 100 if total > 0 else 0
|
||||||
|
hover_text.append(
|
||||||
|
f"Range: {lower}-{upper} µs<br>"
|
||||||
|
f"Count: {buckets[bucket]:,}<br>"
|
||||||
|
f"Percentage: {pct:.2f}%"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create bar chart
|
||||||
|
fig = go.Figure()
|
||||||
|
|
||||||
|
fig.add_trace(
|
||||||
|
go.Bar(
|
||||||
|
x=labels,
|
||||||
|
y=counts,
|
||||||
|
marker=dict(
|
||||||
|
color=counts,
|
||||||
|
colorscale="YlOrRd",
|
||||||
|
showscale=True,
|
||||||
|
colorbar=dict(title="Count"),
|
||||||
|
),
|
||||||
|
text=counts,
|
||||||
|
textposition="outside",
|
||||||
|
hovertext=hover_text,
|
||||||
|
hoverinfo="text",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
fig.update_layout(
|
||||||
|
title="🔥 Log2 Histogram (BCC-style buckets)",
|
||||||
|
xaxis_title="Latency Range (µs)",
|
||||||
|
yaxis_title="Count",
|
||||||
|
template="plotly_white",
|
||||||
|
height=350,
|
||||||
|
xaxis=dict(tickangle=-45),
|
||||||
|
)
|
||||||
|
|
||||||
|
return fig
|
||||||
|
|
||||||
|
def _create_timeseries(self) -> go.Figure:
|
||||||
|
"""Create time series figure."""
|
||||||
|
recent = self.collector.get_recent_latencies()
|
||||||
|
|
||||||
|
if not recent:
|
||||||
|
fig = go.Figure()
|
||||||
|
fig.update_layout(
|
||||||
|
title="⏱️ Real-time Latency - Waiting for data...",
|
||||||
|
template="plotly_white",
|
||||||
|
)
|
||||||
|
return fig
|
||||||
|
|
||||||
|
times = [d["time"] for d in recent]
|
||||||
|
lats = [d["latency"] for d in recent]
|
||||||
|
|
||||||
|
fig = go.Figure()
|
||||||
|
fig.add_trace(
|
||||||
|
go.Scatter(
|
||||||
|
x=times,
|
||||||
|
y=lats,
|
||||||
|
mode="lines",
|
||||||
|
line=dict(color="rgb(231, 76, 60)", width=2),
|
||||||
|
fill="tozeroy",
|
||||||
|
fillcolor="rgba(231, 76, 60, 0.2)",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
fig.update_layout(
|
||||||
|
title="⏱️ Real-time Latency (Last 10,000 samples)",
|
||||||
|
xaxis_title="Time (seconds)",
|
||||||
|
yaxis_title="Latency (µs)",
|
||||||
|
template="plotly_white",
|
||||||
|
height=300,
|
||||||
|
)
|
||||||
|
|
||||||
|
return fig
|
||||||
|
|
||||||
|
def run(self, host: str = "0.0.0.0", port: int = 8050, debug: bool = False):
|
||||||
|
"""Run the dashboard server."""
|
||||||
|
print(f"\n{'=' * 60}")
|
||||||
|
print(f"🚀 Dashboard running at: http://{host}:{port}")
|
||||||
|
print(" Access from your browser to see live graphs")
|
||||||
|
print(
|
||||||
|
" Generate disk I/O to see data: dd if=/dev/zero of=/tmp/test bs=1M count=100"
|
||||||
|
)
|
||||||
|
print(f"{'=' * 60}\n")
|
||||||
|
self.app.run(debug=debug, host=host, port=port)
|
||||||
96
BCC-Examples/vfsreadlat_plotly/data_collector.py
Normal file
96
BCC-Examples/vfsreadlat_plotly/data_collector.py
Normal file
@ -0,0 +1,96 @@
|
|||||||
|
"""Data collection and management."""
|
||||||
|
|
||||||
|
import threading
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
from collections import deque
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import List, Dict
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class LatencyStats:
|
||||||
|
"""Statistics computed from latency data."""
|
||||||
|
|
||||||
|
total: int = 0
|
||||||
|
mean: float = 0.0
|
||||||
|
median: float = 0.0
|
||||||
|
min: float = 0.0
|
||||||
|
max: float = 0.0
|
||||||
|
p95: float = 0.0
|
||||||
|
p99: float = 0.0
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_array(cls, data: np.ndarray) -> "LatencyStats":
|
||||||
|
"""Compute stats from numpy array."""
|
||||||
|
if len(data) == 0:
|
||||||
|
return cls()
|
||||||
|
|
||||||
|
return cls(
|
||||||
|
total=len(data),
|
||||||
|
mean=float(np.mean(data)),
|
||||||
|
median=float(np.median(data)),
|
||||||
|
min=float(np.min(data)),
|
||||||
|
max=float(np.max(data)),
|
||||||
|
p95=float(np.percentile(data, 95)),
|
||||||
|
p99=float(np.percentile(data, 99)),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class LatencyCollector:
|
||||||
|
"""Collects and manages latency data from BPF."""
|
||||||
|
|
||||||
|
def __init__(self, bpf_object, buffer_size: int = 10000):
|
||||||
|
self.bpf = bpf_object
|
||||||
|
self.all_latencies: List[float] = []
|
||||||
|
self.recent_latencies = deque(maxlen=buffer_size) # type: ignore [var-annotated]
|
||||||
|
self.start_time = time.time()
|
||||||
|
self._lock = threading.Lock()
|
||||||
|
self._poll_thread = None
|
||||||
|
|
||||||
|
def callback(self, cpu: int, event):
|
||||||
|
"""Callback for BPF events."""
|
||||||
|
with self._lock:
|
||||||
|
self.all_latencies.append(event.delta_us)
|
||||||
|
self.recent_latencies.append(
|
||||||
|
{"time": time.time() - self.start_time, "latency": event.delta_us}
|
||||||
|
)
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
"""Start collecting data."""
|
||||||
|
self.bpf["events"].open_perf_buffer(self.callback, struct_name="latency_event")
|
||||||
|
|
||||||
|
def poll_loop():
|
||||||
|
while True:
|
||||||
|
self.bpf["events"].poll(100)
|
||||||
|
|
||||||
|
self._poll_thread = threading.Thread(target=poll_loop, daemon=True)
|
||||||
|
self._poll_thread.start()
|
||||||
|
print("✅ Data collection started")
|
||||||
|
|
||||||
|
def get_all_latencies(self) -> np.ndarray:
|
||||||
|
"""Get all latencies as numpy array."""
|
||||||
|
with self._lock:
|
||||||
|
return np.array(self.all_latencies) if self.all_latencies else np.array([])
|
||||||
|
|
||||||
|
def get_recent_latencies(self) -> List[Dict]:
|
||||||
|
"""Get recent latencies with timestamps."""
|
||||||
|
with self._lock:
|
||||||
|
return list(self.recent_latencies)
|
||||||
|
|
||||||
|
def get_stats(self) -> LatencyStats:
|
||||||
|
"""Compute current statistics."""
|
||||||
|
return LatencyStats.from_array(self.get_all_latencies())
|
||||||
|
|
||||||
|
def get_histogram_buckets(self) -> Dict[int, int]:
|
||||||
|
"""Get log2 histogram buckets."""
|
||||||
|
latencies = self.get_all_latencies()
|
||||||
|
if len(latencies) == 0:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
log_buckets = np.floor(np.log2(latencies + 1)).astype(int)
|
||||||
|
buckets = {} # type: ignore [var-annotated]
|
||||||
|
for bucket in log_buckets:
|
||||||
|
buckets[bucket] = buckets.get(bucket, 0) + 1
|
||||||
|
|
||||||
|
return buckets
|
||||||
Reference in New Issue
Block a user