2 Commits

Author SHA1 Message Date
7bc711c296 Update pythonbpf/functions_pass.py
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-10-02 05:01:32 +05:30
80c3519b95 Fix local_sym_tab usage in binary_ops 2025-10-02 04:58:39 +05:30
194 changed files with 326902 additions and 19656 deletions

2
.gitattributes vendored
View File

@ -1,3 +1 @@
tests/c-form/vmlinux.h linguist-vendored tests/c-form/vmlinux.h linguist-vendored
examples/ linguist-vendored
BCC-Examples/ linguist-vendored

View File

@ -12,8 +12,8 @@ jobs:
name: Format name: Format
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v6 - uses: actions/checkout@v4
- uses: actions/setup-python@v6 - uses: actions/setup-python@v5
with: with:
python-version: "3.x" python-version: "3.x"
- uses: pre-commit/action@v3.0.1 - uses: pre-commit/action@v3.0.1

View File

@ -20,7 +20,7 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v6 - uses: actions/checkout@v5
- uses: actions/setup-python@v6 - uses: actions/setup-python@v6
with: with:
@ -33,7 +33,7 @@ jobs:
python -m build python -m build
- name: Upload distributions - name: Upload distributions
uses: actions/upload-artifact@v6 uses: actions/upload-artifact@v4
with: with:
name: release-dists name: release-dists
path: dist/ path: dist/
@ -59,7 +59,7 @@ jobs:
steps: steps:
- name: Retrieve release distributions - name: Retrieve release distributions
uses: actions/download-artifact@v7 uses: actions/download-artifact@v5
with: with:
name: release-dists name: release-dists
path: dist/ path: dist/

7
.gitignore vendored
View File

@ -7,10 +7,3 @@ __pycache__/
*.ll *.ll
*.o *.o
.ipynb_checkpoints/ .ipynb_checkpoints/
vmlinux.py
~*
vmlinux.h
# Documentation build artifacts
docs/_build/
docs/_templates/

View File

@ -12,7 +12,7 @@
# #
# See https://github.com/pre-commit/pre-commit # See https://github.com/pre-commit/pre-commit
exclude: 'vmlinux.py' exclude: 'vmlinux.*\.py$'
ci: ci:
autoupdate_commit_msg: "chore: update pre-commit hooks" autoupdate_commit_msg: "chore: update pre-commit hooks"
@ -21,7 +21,7 @@ ci:
repos: repos:
# Standard hooks # Standard hooks
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
rev: v6.0.0 rev: v4.6.0
hooks: hooks:
- id: check-added-large-files - id: check-added-large-files
- id: check-case-conflict - id: check-case-conflict
@ -36,16 +36,16 @@ repos:
- id: trailing-whitespace - id: trailing-whitespace
- repo: https://github.com/astral-sh/ruff-pre-commit - repo: https://github.com/astral-sh/ruff-pre-commit
rev: "v0.13.2" rev: "v0.4.2"
hooks: hooks:
- id: ruff - id: ruff
args: ["--fix", "--show-fixes"] args: ["--fix", "--show-fixes"]
- id: ruff-format - id: ruff-format
# exclude: ^(docs)|^(tests)|^(examples) exclude: ^(docs)|^(tests)|^(examples)
# Checking static types # Checking static types
- repo: https://github.com/pre-commit/mirrors-mypy - repo: https://github.com/pre-commit/mirrors-mypy
rev: "v1.18.2" rev: "v1.10.0"
hooks: hooks:
- id: mypy - id: mypy
exclude: ^(tests)|^(examples) exclude: ^(tests)|^(examples)

View File

@ -1,31 +0,0 @@
## BCC examples ported to PythonBPF
This folder contains examples of BCC tutorial examples that have been ported to use **PythonBPF**.
## Requirements
- install `pythonbpf` and `pylibbpf` using pip.
- You will also need `matplotlib` for vfsreadlat.py example.
- You will also need `rich` for vfsreadlat_rich.py example.
- You will also need `plotly` and `dash` for vfsreadlat_plotly.py example.
- All of these are added to `requirements.txt` file. You can install them using the following command:
```bash
pip install -r requirements.txt
```
## Usage
- You'll need root privileges to run these examples. If you are using a virtualenv, use the following command to run the scripts:
```bash
sudo <path_to_virtualenv>/bin/python3 <script_name>.py
```
- For the disksnoop and container-monitor examples, you need to generate the vmlinux.py file first. Follow the instructions in the [main README](https://github.com/pythonbpf/Python-BPF/tree/master?tab=readme-ov-file#first-generate-the-vmlinuxpy-file-for-your-kernel) to generate the vmlinux.py file.
- For vfsreadlat_plotly.py, run the following command to start the Dash server:
```bash
sudo <path_to_virtualenv>/bin/python3 vfsreadlat_plotly/bpf_program.py
```
Then open your web browser and navigate to the given URL.
- For container-monitor, you need to first copy the vmlinux.py to `container-monitor/` directory.
Then run the following command to run the example:
```bash
cp vmlinux.py container-monitor/
sudo <path_to_virtualenv>/bin/python3 container-monitor/container_monitor.py
```

View File

@ -1,122 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "c3520e58-e50f-4bc1-8f9d-a6fecbf6e9f0",
"metadata": {},
"outputs": [],
"source": [
"from vmlinux import struct_request, struct_pt_regs\n",
"from pythonbpf import bpf, section, bpfglobal, map, BPF\n",
"from pythonbpf.helper import ktime\n",
"from pythonbpf.maps import HashMap\n",
"from ctypes import c_int64, c_uint64, c_int32\n",
"\n",
"REQ_WRITE = 1\n",
"\n",
"\n",
"@bpf\n",
"@map\n",
"def start() -> HashMap:\n",
" return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"kprobe/blk_mq_end_request\")\n",
"def trace_completion(ctx: struct_pt_regs) -> c_int64:\n",
" # Get request pointer from first argument\n",
" req_ptr = ctx.di\n",
" req = struct_request(ctx.di)\n",
" # Print: data_len, cmd_flags, latency_us\n",
" data_len = req.__data_len\n",
" cmd_flags = req.cmd_flags\n",
" # Lookup start timestamp\n",
" req_tsp = start.lookup(req_ptr)\n",
" if req_tsp:\n",
" # Calculate delta in nanoseconds\n",
" delta = ktime() - req_tsp\n",
"\n",
" # Convert to microseconds for printing\n",
" delta_us = delta // 1000\n",
"\n",
" print(f\"{data_len} {cmd_flags:x} {delta_us}\\n\")\n",
"\n",
" # Delete the entry\n",
" start.delete(req_ptr)\n",
"\n",
" return c_int64(0)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"kprobe/blk_mq_start_request\")\n",
"def trace_start(ctx1: struct_pt_regs) -> c_int32:\n",
" req = ctx1.di\n",
" ts = ktime()\n",
" start.update(req, ts)\n",
" return c_int32(0)\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"b = BPF()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97040f73-98e0-4993-94c6-125d1b42d931",
"metadata": {},
"outputs": [],
"source": [
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1bd4f51-fa25-42e1-877c-e48a2605189f",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import trace_pipe"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "96b4b59b-b0db-4952-9534-7a714f685089",
"metadata": {},
"outputs": [],
"source": [
"trace_pipe()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,48 +0,0 @@
from ctypes import c_int32, c_int64, c_uint64
from vmlinux import struct_pt_regs, struct_request
from pythonbpf import bpf, bpfglobal, compile, map, section
from pythonbpf.helper import ktime
from pythonbpf.maps import HashMap
@bpf
@map
def start() -> HashMap:
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)
@bpf
@section("kprobe/blk_mq_end_request")
def trace_completion(ctx: struct_pt_regs) -> c_int64:
req_ptr = ctx.di
req = struct_request(ctx.di)
data_len = req.__data_len
cmd_flags = req.cmd_flags
req_tsp = start.lookup(req_ptr)
if req_tsp:
delta = ktime() - req_tsp
delta_us = delta // 1000
print(f"{data_len} {cmd_flags:x} {delta_us}\n")
start.delete(req_ptr)
return c_int64(0)
@bpf
@section("kprobe/blk_mq_start_request")
def trace_start(ctx1: struct_pt_regs) -> c_int32:
req = ctx1.di
ts = ktime()
start.update(req, ts)
return c_int32(0)
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
compile()

View File

@ -1,83 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "28cf2e27-41e2-461c-a39c-147417141a4e",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, section, bpfglobal, BPF, trace_fields\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "133190e5-5a99-4585-b6e1-91224ed973c2",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_clone\")\n",
"def hello_world(ctx: c_void_p) -> c_int64:\n",
" print(\"Hello, World!\")\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3934efb-4043-4545-ae4c-c50ec40a24fd",
"metadata": {},
"outputs": [],
"source": [
"# header\n",
"print(f\"{'TIME(s)':<18} {'COMM':<16} {'PID':<6} {'MESSAGE'}\")\n",
"\n",
"# format output\n",
"while True:\n",
" try:\n",
" (task, pid, cpu, flags, ts, msg) = trace_fields()\n",
" except ValueError:\n",
" continue\n",
" except KeyboardInterrupt:\n",
" exit()\n",
" print(f\"{ts:<18} {task:<16} {pid:<6} {msg}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,34 +0,0 @@
from pythonbpf import bpf, section, bpfglobal, BPF, trace_fields
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
# header
print(f"{'TIME(s)':<18} {'COMM':<16} {'PID':<6} {'MESSAGE'}")
# format output
while True:
try:
(task, pid, cpu, flags, ts, msg) = trace_fields()
except ValueError:
continue
except KeyboardInterrupt:
exit()
print(f"{ts:<18} {task:<16} {pid:<6} {msg}")

View File

@ -1,110 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "79b74928-f4b4-4320-96e3-d973997de2f4",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, map, struct, section, bpfglobal, BPF\n",
"from pythonbpf.helper import ktime, pid, comm\n",
"from pythonbpf.maps import PerfEventArray\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5bdb0329-ae2d-45e8-808e-5ed5b1374204",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@struct\n",
"class data_t:\n",
" pid: c_int64\n",
" ts: c_int64\n",
" comm: str(16)\n",
"\n",
"\n",
"@bpf\n",
"@map\n",
"def events() -> PerfEventArray:\n",
" return PerfEventArray(key_size=c_int64, value_size=c_int64)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_clone\")\n",
"def hello(ctx: c_void_p) -> c_int64:\n",
" dataobj = data_t()\n",
" dataobj.pid, dataobj.ts = pid(), ktime()\n",
" comm(dataobj.comm)\n",
" events.output(dataobj)\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4bcc7d57-6cc4-48a3-bbd2-42ad6263afdf",
"metadata": {},
"outputs": [],
"source": [
"start = 0\n",
"\n",
"\n",
"def callback(cpu, event):\n",
" global start\n",
" if start == 0:\n",
" start = event.ts\n",
" ts = (event.ts - start) / 1e9\n",
" print(f\"[CPU {cpu}] PID: {event.pid}, TS: {ts}, COMM: {event.comm.decode()}\")\n",
"\n",
"\n",
"perf = b[\"events\"].open_perf_buffer(callback, struct_name=\"data_t\")\n",
"print(\"Starting to poll... (Ctrl+C to stop)\")\n",
"print(\"Try running: fork() or clone() system calls to trigger events\")\n",
"\n",
"try:\n",
" while True:\n",
" b[\"events\"].poll(1000)\n",
"except KeyboardInterrupt:\n",
" print(\"Stopping...\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,61 +0,0 @@
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime, pid, comm
from pythonbpf.maps import PerfEventArray
from ctypes import c_void_p, c_int64
@bpf
@struct
class data_t:
pid: c_int64
ts: c_int64
comm: str(16) # type: ignore [valid-type]
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_int64, value_size=c_int64)
@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def hello(ctx: c_void_p) -> c_int64:
dataobj = data_t()
dataobj.pid, dataobj.ts = pid(), ktime()
comm(dataobj.comm)
events.output(dataobj)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
start = 0
def callback(cpu, event):
global start
if start == 0:
start = event.ts
ts = (event.ts - start) / 1e9
print(f"[CPU {cpu}] PID: {event.pid}, TS: {ts}, COMM: {event.comm.decode()}")
perf = b["events"].open_perf_buffer(callback, struct_name="data_t")
print("Starting to poll... (Ctrl+C to stop)")
print("Try running: fork() or clone() system calls to trigger events")
try:
while True:
b["events"].poll(1000)
except KeyboardInterrupt:
print("Stopping...")

View File

@ -1,116 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 9,
"id": "7d5d3cfb-39ba-4516-9856-b3bed47a0cef",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "cf1c87aa-e173-4156-8f2d-762225bc6d19",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_clone\")\n",
"def hello_world(ctx: c_void_p) -> c_int64:\n",
" print(\"Hello, World!\")\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"b = BPF()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bd81383d-f75a-4269-8451-3d985d85b124",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Cache2 I/O-4716 [003] ...21 8218.000492: bpf_trace_printk: count: 11 with 4716\n",
"\n",
" Cache2 I/O-4716 [003] ...21 8218.000499: bpf_trace_printk: Hello, World!\n",
"\n",
" WebExtensions-5168 [002] ...21 8219.320392: bpf_trace_printk: count: 13 with 5168\n",
"\n",
" WebExtensions-5168 [002] ...21 8219.320399: bpf_trace_printk: Hello, World!\n",
"\n",
" python-21155 [001] ...21 8220.933716: bpf_trace_printk: count: 5 with 21155\n",
"\n",
" python-21155 [001] ...21 8220.933721: bpf_trace_printk: Hello, World!\n",
"\n",
" python-21155 [002] ...21 8221.341290: bpf_trace_printk: count: 6 with 21155\n",
"\n",
" python-21155 [002] ...21 8221.341295: bpf_trace_printk: Hello, World!\n",
"\n",
" Isolated Web Co-5462 [000] ...21 8223.095033: bpf_trace_printk: count: 7 with 5462\n",
"\n",
" Isolated Web Co-5462 [000] ...21 8223.095043: bpf_trace_printk: Hello, World!\n",
"\n",
" firefox-4542 [000] ...21 8227.760067: bpf_trace_printk: count: 8 with 4542\n",
"\n",
" firefox-4542 [000] ...21 8227.760080: bpf_trace_printk: Hello, World!\n",
"\n",
" Isolated Web Co-12404 [003] ...21 8227.917086: bpf_trace_printk: count: 7 with 12404\n",
"\n",
" Isolated Web Co-12404 [003] ...21 8227.917095: bpf_trace_printk: Hello, World!\n",
"\n"
]
}
],
"source": [
"b.load()\n",
"b.attach_all()\n",
"trace_pipe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "01e1f25b-decc-425b-a1aa-a5e701082574",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,23 +0,0 @@
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
trace_pipe()

View File

@ -1,9 +0,0 @@
# =============================================================================
# Requirements for PythonBPF BCC-Examples
# =============================================================================
dash
matplotlib
numpy
plotly
rich

View File

@ -1,107 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "dcab010c-f5e9-446f-9f9f-056cc794ad14",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, map, section, bpfglobal, BPF, trace_fields\n",
"from pythonbpf.helper import ktime\n",
"from pythonbpf.maps import HashMap\n",
"\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "720797e8-9c81-4af6-a385-80f1ec4c0f15",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@map\n",
"def last() -> HashMap:\n",
" return HashMap(key=c_int64, value=c_int64, max_entries=2)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_sync\")\n",
"def do_trace(ctx: c_void_p) -> c_int64:\n",
" ts_key, cnt_key = 0, 1\n",
" tsp, cntp = last.lookup(ts_key), last.lookup(cnt_key)\n",
" if not cntp:\n",
" last.update(cnt_key, 0)\n",
" cntp = last.lookup(cnt_key)\n",
" if tsp:\n",
" delta = ktime() - tsp\n",
" if delta < 1000000000:\n",
" time_ms = delta // 1000000\n",
" print(f\"{time_ms} {cntp}\")\n",
" last.delete(ts_key)\n",
" else:\n",
" last.update(ts_key, ktime())\n",
" last.update(cnt_key, cntp + 1)\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "78a8b82c-7c5f-43c1-9de1-cd982a0f345b",
"metadata": {},
"outputs": [],
"source": [
"print(\"Tracing for quick sync's... Ctrl-C to end\")\n",
"\n",
"# format output\n",
"start = 0\n",
"while True:\n",
" try:\n",
" task, pid, cpu, flags, ts, msg = trace_fields()\n",
" if start == 0:\n",
" start = ts\n",
" ts -= start\n",
" ms, cnt = msg.split()\n",
" print(f\"At time {ts} s: Multiple syncs detected, last {ms} ms ago. Count {cnt}\")\n",
" except KeyboardInterrupt:\n",
" exit()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,58 +0,0 @@
from pythonbpf import bpf, map, section, bpfglobal, BPF, trace_fields
from pythonbpf.helper import ktime
from pythonbpf.maps import HashMap
from ctypes import c_void_p, c_int64
@bpf
@map
def last() -> HashMap:
return HashMap(key=c_int64, value=c_int64, max_entries=2)
@bpf
@section("tracepoint/syscalls/sys_enter_sync")
def do_trace(ctx: c_void_p) -> c_int64:
ts_key, cnt_key = 0, 1
tsp, cntp = last.lookup(ts_key), last.lookup(cnt_key)
if not cntp:
last.update(cnt_key, 0)
cntp = last.lookup(cnt_key)
if tsp:
delta = ktime() - tsp
if delta < 1000000000:
time_ms = delta // 1000000
print(f"{time_ms} {cntp}")
last.delete(ts_key)
else:
last.update(ts_key, ktime())
last.update(cnt_key, cntp + 1)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
print("Tracing for quick sync's... Ctrl-C to end")
# format output
start = 0
while True:
try:
task, pid, cpu, flags, ts, msg = trace_fields()
if start == 0:
start = ts
ts -= start
ms, cnt = msg.split()
print(f"At time {ts} s: Multiple syncs detected, last {ms} ms ago. Count {cnt}")
except KeyboardInterrupt:
exit()

View File

@ -1,134 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "b0d1ab05-0c1f-4578-9c1b-568202b95a5c",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, map, struct, section, bpfglobal, BPF\n",
"from pythonbpf.helper import ktime\n",
"from pythonbpf.maps import HashMap, PerfEventArray\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "85e50d0a-f9d8-468f-8e03-f5f7128f05d8",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@struct\n",
"class data_t:\n",
" ts: c_int64\n",
" ms: c_int64\n",
"\n",
"\n",
"@bpf\n",
"@map\n",
"def events() -> PerfEventArray:\n",
" return PerfEventArray(key_size=c_int64, value_size=c_int64)\n",
"\n",
"\n",
"@bpf\n",
"@map\n",
"def last() -> HashMap:\n",
" return HashMap(key=c_int64, value=c_int64, max_entries=1)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_sync\")\n",
"def do_trace(ctx: c_void_p) -> c_int64:\n",
" dat, dat.ts, key = data_t(), ktime(), 0\n",
" tsp = last.lookup(key)\n",
" if tsp:\n",
" delta = ktime() - tsp\n",
" if delta < 1000000000:\n",
" dat.ms = delta // 1000000\n",
" events.output(dat)\n",
" last.delete(key)\n",
" else:\n",
" last.update(key, ktime())\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40bb1107-369f-4be7-9f10-37201900c16b",
"metadata": {},
"outputs": [],
"source": [
"print(\"Tracing for quick sync's... Ctrl-C to end\")\n",
"\n",
"# format output\n",
"start = 0\n",
"\n",
"\n",
"def callback(cpu, event):\n",
" global start\n",
" if start == 0:\n",
" start = event.ts\n",
" event.ts -= start\n",
" print(\n",
" f\"At time {event.ts / 1e9} s: Multiple sync detected, Last sync: {event.ms} ms ago\"\n",
" )\n",
"\n",
"\n",
"perf = b[\"events\"].open_perf_buffer(callback, struct_name=\"data_t\")\n",
"print(\"Starting to poll... (Ctrl+C to stop)\")\n",
"print(\"Try running: fork() or clone() system calls to trigger events\")\n",
"\n",
"try:\n",
" while True:\n",
" b[\"events\"].poll(1000)\n",
"except KeyboardInterrupt:\n",
" print(\"Stopping...\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "94a588d9-3a40-437c-a35b-fc40410f3eb7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,75 +0,0 @@
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime
from pythonbpf.maps import HashMap, PerfEventArray
from ctypes import c_void_p, c_int64
@bpf
@struct
class data_t:
ts: c_int64
ms: c_int64
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_int64, value_size=c_int64)
@bpf
@map
def last() -> HashMap:
return HashMap(key=c_int64, value=c_int64, max_entries=1)
@bpf
@section("tracepoint/syscalls/sys_enter_sync")
def do_trace(ctx: c_void_p) -> c_int64:
dat, dat.ts, key = data_t(), ktime(), 0
tsp = last.lookup(key)
if tsp:
delta = ktime() - tsp
if delta < 1000000000:
dat.ms = delta // 1000000
events.output(dat)
last.delete(key)
else:
last.update(key, ktime())
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
print("Tracing for quick sync's... Ctrl-C to end")
# format output
start = 0
def callback(cpu, event):
global start
if start == 0:
start = event.ts
event.ts -= start
print(
f"At time {event.ts / 1e9} s: Multiple sync detected, Last sync: {event.ms} ms ago"
)
perf = b["events"].open_perf_buffer(callback, struct_name="data_t")
print("Starting to poll... (Ctrl+C to stop)")
try:
while True:
b["events"].poll(1000)
except KeyboardInterrupt:
print("Stopping...")

View File

@ -1,102 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "bfe01ceb-2f27-41b3-b3ba-50ec65cfddda",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, map, section, bpfglobal, BPF, trace_fields\n",
"from pythonbpf.helper import ktime\n",
"from pythonbpf.maps import HashMap\n",
"\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ddb115f4-20a7-43bc-bb5b-ccbfd6031fc2",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@map\n",
"def last() -> HashMap:\n",
" return HashMap(key=c_int64, value=c_int64, max_entries=1)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_sync\")\n",
"def do_trace(ctx: c_void_p) -> c_int64:\n",
" key = 0\n",
" tsp = last.lookup(key)\n",
" if tsp:\n",
" delta = ktime() - tsp\n",
" if delta < 1000000000:\n",
" time_ms = delta // 1000000\n",
" print(f\"{time_ms}\")\n",
" last.delete(key)\n",
" else:\n",
" last.update(key, ktime())\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e4f46574-9fd8-46e7-9c7b-27a36d07f200",
"metadata": {},
"outputs": [],
"source": [
"print(\"Tracing for quick sync's... Ctrl-C to end\")\n",
"\n",
"# format output\n",
"start = 0\n",
"while True:\n",
" try:\n",
" task, pid, cpu, flags, ts, ms = trace_fields()\n",
" if start == 0:\n",
" start = ts\n",
" ts -= start\n",
" print(f\"At time {ts} s: Multiple syncs detected, last {ms} ms ago\")\n",
" except KeyboardInterrupt:\n",
" exit()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,53 +0,0 @@
from pythonbpf import bpf, map, section, bpfglobal, BPF, trace_fields
from pythonbpf.helper import ktime
from pythonbpf.maps import HashMap
from ctypes import c_void_p, c_int64
@bpf
@map
def last() -> HashMap:
return HashMap(key=c_int64, value=c_int64, max_entries=1)
@bpf
@section("tracepoint/syscalls/sys_enter_sync")
def do_trace(ctx: c_void_p) -> c_int64:
key = 0
tsp = last.lookup(key)
if tsp:
delta = ktime() - tsp
if delta < 1000000000:
time_ms = delta // 1000000
print(f"{time_ms}")
last.delete(key)
else:
last.update(key, ktime())
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
print("Tracing for quick sync's... Ctrl-C to end")
# format output
start = 0
while True:
try:
task, pid, cpu, flags, ts, ms = trace_fields()
if start == 0:
start = ts
ts -= start
print(f"At time {ts} s: Multiple syncs detected, last {ms} ms ago")
except KeyboardInterrupt:
exit()

View File

@ -1,73 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "bb49598f-b9cc-4ea8-8391-923cad513711",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5da237b0-1c7d-4ec5-8c24-696b1c1d97fa",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_sync\")\n",
"def hello_world(ctx: c_void_p) -> c_int64:\n",
" print(\"sys_sync() called\")\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e4c218ac-fe47-4fd1-a27b-c07e02f3cd05",
"metadata": {},
"outputs": [],
"source": [
"print(\"Tracing sys_sync()... Ctrl-C to end.\")\n",
"trace_pipe()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,23 +0,0 @@
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_sync")
def hello_world(ctx: c_void_p) -> c_int64:
print("sys_sync() called")
return c_int64(0)
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
print("Tracing sys_sync()... Ctrl-C to end.")
trace_pipe()

File diff suppressed because one or more lines are too long

View File

@ -1,127 +0,0 @@
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime, pid
from pythonbpf.maps import HashMap, PerfEventArray
from ctypes import c_void_p, c_uint64
import matplotlib.pyplot as plt
import numpy as np
@bpf
@struct
class latency_event:
pid: c_uint64
delta_us: c_uint64 # Latency in microseconds
@bpf
@map
def start() -> HashMap:
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_uint64, value_size=c_uint64)
@bpf
@section("kprobe/vfs_read")
def do_entry(ctx: c_void_p) -> c_uint64:
p, ts = pid(), ktime()
start.update(p, ts)
return 0 # type: ignore [return-value]
@bpf
@section("kretprobe/vfs_read")
def do_return(ctx: c_void_p) -> c_uint64:
p = pid()
tsp = start.lookup(p)
if tsp:
delta_ns = ktime() - tsp
# Only track if latency > 1 microsecond
if delta_ns > 1000:
evt = latency_event()
evt.pid, evt.delta_us = p, delta_ns // 1000
events.output(evt)
start.delete(p)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Load BPF
print("Loading BPF program...")
b = BPF()
b.load()
b.attach_all()
# Collect latencies
latencies = []
def callback(cpu, event):
latencies.append(event.delta_us)
b["events"].open_perf_buffer(callback, struct_name="latency_event")
print("Tracing vfs_read latency... Hit Ctrl-C to end.")
try:
while True:
b["events"].poll(1000)
if len(latencies) > 0 and len(latencies) % 1000 == 0:
print(f"Collected {len(latencies)} samples...")
except KeyboardInterrupt:
print(f"Collected {len(latencies)} samples. Generating histogram...")
# Create histogram with matplotlib
if latencies:
# Use log scale for better visualization
log_latencies = np.log2(latencies)
plt.figure(figsize=(12, 6))
# Plot 1: Linear histogram
plt.subplot(1, 2, 1)
plt.hist(latencies, bins=50, edgecolor="black", alpha=0.7)
plt.xlabel("Latency (microseconds)")
plt.ylabel("Count")
plt.title("VFS Read Latency Distribution (Linear)")
plt.grid(True, alpha=0.3)
# Plot 2: Log2 histogram (like BCC)
plt.subplot(1, 2, 2)
plt.hist(log_latencies, bins=50, edgecolor="black", alpha=0.7, color="orange")
plt.xlabel("log2(Latency in µs)")
plt.ylabel("Count")
plt.title("VFS Read Latency Distribution (Log2)")
plt.grid(True, alpha=0.3)
# Add statistics
print("Statistics:")
print(f" Count: {len(latencies)}")
print(f" Min: {min(latencies)} µs")
print(f" Max: {max(latencies)} µs")
print(f" Mean: {np.mean(latencies):.2f} µs")
print(f" Median: {np.median(latencies):.2f} µs")
print(f" P95: {np.percentile(latencies, 95):.2f} µs")
print(f" P99: {np.percentile(latencies, 99):.2f} µs")
plt.tight_layout()
plt.savefig("vfs_read_latency.png", dpi=150)
print("Histogram saved to vfs_read_latency.png")
plt.show()
else:
print("No samples collected!")

View File

@ -1,101 +0,0 @@
"""BPF program for tracing VFS read latency."""
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime, pid
from pythonbpf.maps import HashMap, PerfEventArray
from ctypes import c_void_p, c_uint64
import argparse
from data_collector import LatencyCollector
from dashboard import LatencyDashboard
@bpf
@struct
class latency_event:
pid: c_uint64
delta_us: c_uint64
@bpf
@map
def start() -> HashMap:
"""Map to store start timestamps by PID."""
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)
@bpf
@map
def events() -> PerfEventArray:
"""Perf event array for sending latency events to userspace."""
return PerfEventArray(key_size=c_uint64, value_size=c_uint64)
@bpf
@section("kprobe/vfs_read")
def do_entry(ctx: c_void_p) -> c_uint64:
"""Record start time when vfs_read is called."""
p, ts = pid(), ktime()
start.update(p, ts)
return 0 # type: ignore [return-value]
@bpf
@section("kretprobe/vfs_read")
def do_return(ctx: c_void_p) -> c_uint64:
"""Calculate and record latency when vfs_read returns."""
p = pid()
tsp = start.lookup(p)
if tsp:
delta_ns = ktime() - tsp
# Only track latencies > 1 microsecond
if delta_ns > 1000:
evt = latency_event()
evt.pid, evt.delta_us = p, delta_ns // 1000
events.output(evt)
start.delete(p)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Monitor VFS read latency with live dashboard"
)
parser.add_argument(
"--host", default="0.0.0.0", help="Dashboard host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=8050, help="Dashboard port (default: 8050)"
)
parser.add_argument(
"--buffer", type=int, default=10000, help="Recent data buffer size"
)
return parser.parse_args()
args = parse_args()
# Load BPF program
print("Loading BPF program...")
b = BPF()
b.load()
b.attach_all()
print("✅ BPF program loaded and attached")
# Setup data collector
collector = LatencyCollector(b, buffer_size=args.buffer)
collector.start()
# Create and run dashboard
dashboard = LatencyDashboard(collector)
dashboard.run(host=args.host, port=args.port)

View File

@ -1,282 +0,0 @@
"""Plotly Dash dashboard for visualizing latency data."""
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
class LatencyDashboard:
"""Interactive dashboard for latency visualization."""
def __init__(self, collector, title: str = "VFS Read Latency Monitor"):
self.collector = collector
self.app = dash.Dash(__name__)
self.app.title = title
self._setup_layout()
self._setup_callbacks()
def _setup_layout(self):
"""Create dashboard layout."""
self.app.layout = html.Div(
[
html.H1(
"🔥 VFS Read Latency Dashboard",
style={
"textAlign": "center",
"color": "#2c3e50",
"marginBottom": 20,
},
),
# Stats cards
html.Div(
[
self._create_stat_card(
"total-samples", "📊 Total Samples", "#3498db"
),
self._create_stat_card(
"mean-latency", "⚡ Mean Latency", "#e74c3c"
),
self._create_stat_card(
"p99-latency", "🔥 P99 Latency", "#f39c12"
),
],
style={
"display": "flex",
"justifyContent": "space-around",
"marginBottom": 30,
},
),
# Graphs - ✅ Make sure these IDs match the callback outputs
dcc.Graph(id="dual-histogram", style={"height": "450px"}),
dcc.Graph(id="log2-buckets", style={"height": "350px"}),
dcc.Graph(id="timeseries-graph", style={"height": "300px"}),
# Auto-update
dcc.Interval(id="interval-component", interval=1000, n_intervals=0),
],
style={"padding": 20, "fontFamily": "Arial, sans-serif"},
)
def _create_stat_card(self, id_name: str, title: str, color: str):
"""Create a statistics card."""
return html.Div(
[
html.H3(title, style={"color": color}),
html.H2(id=id_name, style={"fontSize": 48, "color": "#2c3e50"}),
],
className="stat-box",
style={
"background": "white",
"padding": 20,
"borderRadius": 10,
"boxShadow": "0 4px 6px rgba(0,0,0,0.1)",
"textAlign": "center",
"flex": 1,
"margin": "0 10px",
},
)
def _setup_callbacks(self):
"""Setup dashboard callbacks."""
@self.app.callback(
[
Output("total-samples", "children"),
Output("mean-latency", "children"),
Output("p99-latency", "children"),
Output("dual-histogram", "figure"), # ✅ Match layout IDs
Output("log2-buckets", "figure"), # ✅ Match layout IDs
Output("timeseries-graph", "figure"), # ✅ Match layout IDs
],
[Input("interval-component", "n_intervals")],
)
def update_dashboard(n):
stats = self.collector.get_stats()
if stats.total == 0:
return self._empty_state()
return (
f"{stats.total:,}",
f"{stats.mean:.1f} µs",
f"{stats.p99:.1f} µs",
self._create_dual_histogram(),
self._create_log2_buckets(),
self._create_timeseries(),
)
def _empty_state(self):
"""Return empty state for dashboard."""
empty_fig = go.Figure()
empty_fig.update_layout(
title="Waiting for data... Generate some disk I/O!", template="plotly_white"
)
# ✅ Return 6 values (3 stats + 3 figures)
return "0", "0 µs", "0 µs", empty_fig, empty_fig, empty_fig
def _create_dual_histogram(self) -> go.Figure:
"""Create side-by-side linear and log2 histograms."""
latencies = self.collector.get_all_latencies()
# Create subplots
fig = make_subplots(
rows=1,
cols=2,
subplot_titles=("Linear Scale", "Log2 Scale"),
horizontal_spacing=0.12,
)
# Linear histogram
fig.add_trace(
go.Histogram(
x=latencies,
nbinsx=50,
marker_color="rgb(55, 83, 109)",
opacity=0.75,
name="Linear",
),
row=1,
col=1,
)
# Log2 histogram
log2_latencies = np.log2(latencies + 1) # +1 to avoid log2(0)
fig.add_trace(
go.Histogram(
x=log2_latencies,
nbinsx=30,
marker_color="rgb(243, 156, 18)",
opacity=0.75,
name="Log2",
),
row=1,
col=2,
)
# Update axes
fig.update_xaxes(title_text="Latency (µs)", row=1, col=1)
fig.update_xaxes(title_text="log2(Latency in µs)", row=1, col=2)
fig.update_yaxes(title_text="Count", row=1, col=1)
fig.update_yaxes(title_text="Count", row=1, col=2)
fig.update_layout(
title_text="📊 Latency Distribution (Linear vs Log2)",
template="plotly_white",
showlegend=False,
height=450,
)
return fig
def _create_log2_buckets(self) -> go.Figure:
"""Create bar chart of log2 buckets (like BCC histogram)."""
buckets = self.collector.get_histogram_buckets()
if not buckets:
fig = go.Figure()
fig.update_layout(
title="🔥 Log2 Histogram - Waiting for data...", template="plotly_white"
)
return fig
# Sort buckets
sorted_buckets = sorted(buckets.keys())
counts = [buckets[b] for b in sorted_buckets]
# Create labels (e.g., "8-16µs", "16-32µs")
labels = []
hover_text = []
for bucket in sorted_buckets:
lower = 2**bucket
upper = 2 ** (bucket + 1)
labels.append(f"{lower}-{upper}")
# Calculate percentage
total = sum(counts)
pct = (buckets[bucket] / total) * 100 if total > 0 else 0
hover_text.append(
f"Range: {lower}-{upper} µs<br>"
f"Count: {buckets[bucket]:,}<br>"
f"Percentage: {pct:.2f}%"
)
# Create bar chart
fig = go.Figure()
fig.add_trace(
go.Bar(
x=labels,
y=counts,
marker=dict(
color=counts,
colorscale="YlOrRd",
showscale=True,
colorbar=dict(title="Count"),
),
text=counts,
textposition="outside",
hovertext=hover_text,
hoverinfo="text",
)
)
fig.update_layout(
title="🔥 Log2 Histogram (BCC-style buckets)",
xaxis_title="Latency Range (µs)",
yaxis_title="Count",
template="plotly_white",
height=350,
xaxis=dict(tickangle=-45),
)
return fig
def _create_timeseries(self) -> go.Figure:
"""Create time series figure."""
recent = self.collector.get_recent_latencies()
if not recent:
fig = go.Figure()
fig.update_layout(
title="⏱️ Real-time Latency - Waiting for data...",
template="plotly_white",
)
return fig
times = [d["time"] for d in recent]
lats = [d["latency"] for d in recent]
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=times,
y=lats,
mode="lines",
line=dict(color="rgb(231, 76, 60)", width=2),
fill="tozeroy",
fillcolor="rgba(231, 76, 60, 0.2)",
)
)
fig.update_layout(
title="⏱️ Real-time Latency (Last 10,000 samples)",
xaxis_title="Time (seconds)",
yaxis_title="Latency (µs)",
template="plotly_white",
height=300,
)
return fig
def run(self, host: str = "0.0.0.0", port: int = 8050, debug: bool = False):
"""Run the dashboard server."""
print(f"\n{'=' * 60}")
print(f"🚀 Dashboard running at: http://{host}:{port}")
print(" Access from your browser to see live graphs")
print(
" Generate disk I/O to see data: dd if=/dev/zero of=/tmp/test bs=1M count=100"
)
print(f"{'=' * 60}\n")
self.app.run(debug=debug, host=host, port=port)

View File

@ -1,96 +0,0 @@
"""Data collection and management."""
import threading
import time
import numpy as np
from collections import deque
from dataclasses import dataclass
from typing import List, Dict
@dataclass
class LatencyStats:
"""Statistics computed from latency data."""
total: int = 0
mean: float = 0.0
median: float = 0.0
min: float = 0.0
max: float = 0.0
p95: float = 0.0
p99: float = 0.0
@classmethod
def from_array(cls, data: np.ndarray) -> "LatencyStats":
"""Compute stats from numpy array."""
if len(data) == 0:
return cls()
return cls(
total=len(data),
mean=float(np.mean(data)),
median=float(np.median(data)),
min=float(np.min(data)),
max=float(np.max(data)),
p95=float(np.percentile(data, 95)),
p99=float(np.percentile(data, 99)),
)
class LatencyCollector:
"""Collects and manages latency data from BPF."""
def __init__(self, bpf_object, buffer_size: int = 10000):
self.bpf = bpf_object
self.all_latencies: List[float] = []
self.recent_latencies = deque(maxlen=buffer_size) # type: ignore [var-annotated]
self.start_time = time.time()
self._lock = threading.Lock()
self._poll_thread = None
def callback(self, cpu: int, event):
"""Callback for BPF events."""
with self._lock:
self.all_latencies.append(event.delta_us)
self.recent_latencies.append(
{"time": time.time() - self.start_time, "latency": event.delta_us}
)
def start(self):
"""Start collecting data."""
self.bpf["events"].open_perf_buffer(self.callback, struct_name="latency_event")
def poll_loop():
while True:
self.bpf["events"].poll(100)
self._poll_thread = threading.Thread(target=poll_loop, daemon=True)
self._poll_thread.start()
print("✅ Data collection started")
def get_all_latencies(self) -> np.ndarray:
"""Get all latencies as numpy array."""
with self._lock:
return np.array(self.all_latencies) if self.all_latencies else np.array([])
def get_recent_latencies(self) -> List[Dict]:
"""Get recent latencies with timestamps."""
with self._lock:
return list(self.recent_latencies)
def get_stats(self) -> LatencyStats:
"""Compute current statistics."""
return LatencyStats.from_array(self.get_all_latencies())
def get_histogram_buckets(self) -> Dict[int, int]:
"""Get log2 histogram buckets."""
latencies = self.get_all_latencies()
if len(latencies) == 0:
return {}
log_buckets = np.floor(np.log2(latencies + 1)).astype(int)
buckets = {} # type: ignore [var-annotated]
for bucket in log_buckets:
buckets[bucket] = buckets.get(bucket, 0) + 1
return buckets

View File

@ -1,178 +0,0 @@
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime, pid
from pythonbpf.maps import HashMap, PerfEventArray
from ctypes import c_void_p, c_uint64
from rich.console import Console
from rich.live import Live
from rich.table import Table
from rich.panel import Panel
from rich.layout import Layout
import numpy as np
import threading
import time
from collections import Counter
# ==================== BPF Setup ====================
@bpf
@struct
class latency_event:
pid: c_uint64
delta_us: c_uint64
@bpf
@map
def start() -> HashMap:
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_uint64, value_size=c_uint64)
@bpf
@section("kprobe/vfs_read")
def do_entry(ctx: c_void_p) -> c_uint64:
p, ts = pid(), ktime()
start.update(p, ts)
return 0 # type: ignore [return-value]
@bpf
@section("kretprobe/vfs_read")
def do_return(ctx: c_void_p) -> c_uint64:
p = pid()
tsp = start.lookup(p)
if tsp:
delta_ns = ktime() - tsp
if delta_ns > 1000:
evt = latency_event()
evt.pid, evt.delta_us = p, delta_ns // 1000
events.output(evt)
start.delete(p)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
console = Console()
console.print("[bold green]Loading BPF program...[/]")
b = BPF()
b.load()
b.attach_all()
# ==================== Data Collection ====================
all_latencies = []
histogram_buckets = Counter() # type: ignore [var-annotated]
def callback(cpu, event):
all_latencies.append(event.delta_us)
# Create log2 bucket
bucket = int(np.floor(np.log2(event.delta_us + 1)))
histogram_buckets[bucket] += 1
b["events"].open_perf_buffer(callback, struct_name="latency_event")
def poll_events():
while True:
b["events"].poll(100)
poll_thread = threading.Thread(target=poll_events, daemon=True)
poll_thread.start()
# ==================== Live Display ====================
def generate_display():
layout = Layout()
layout.split_column(
Layout(name="header", size=3),
Layout(name="stats", size=8),
Layout(name="histogram", size=20),
)
# Header
layout["header"].update(
Panel("[bold cyan]🔥 VFS Read Latency Monitor[/]", style="bold white on blue")
)
# Stats
if len(all_latencies) > 0:
lats = np.array(all_latencies)
stats_table = Table(show_header=False, box=None, padding=(0, 2))
stats_table.add_column(style="bold cyan")
stats_table.add_column(style="bold yellow")
stats_table.add_row("📊 Total Samples:", f"{len(lats):,}")
stats_table.add_row("⚡ Mean Latency:", f"{np.mean(lats):.2f} µs")
stats_table.add_row("📉 Min Latency:", f"{np.min(lats):.2f} µs")
stats_table.add_row("📈 Max Latency:", f"{np.max(lats):.2f} µs")
stats_table.add_row("🎯 P95 Latency:", f"{np.percentile(lats, 95):.2f} µs")
stats_table.add_row("🔥 P99 Latency:", f"{np.percentile(lats, 99):.2f} µs")
layout["stats"].update(
Panel(stats_table, title="Statistics", border_style="green")
)
else:
layout["stats"].update(
Panel("[yellow]Waiting for data...[/]", border_style="yellow")
)
# Histogram
if histogram_buckets:
hist_table = Table(title="Latency Distribution", box=None)
hist_table.add_column("Range", style="cyan", no_wrap=True)
hist_table.add_column("Count", justify="right", style="yellow")
hist_table.add_column("Distribution", style="green")
max_count = max(histogram_buckets.values())
for bucket in sorted(histogram_buckets.keys()):
count = histogram_buckets[bucket]
lower = 2**bucket
upper = 2 ** (bucket + 1)
# Create bar
bar_width = int((count / max_count) * 40)
bar = "" * bar_width
hist_table.add_row(
f"{lower:5d}-{upper:5d} µs",
f"{count:6d}",
f"[green]{bar}[/] {count / len(all_latencies) * 100:.1f}%",
)
layout["histogram"].update(Panel(hist_table, border_style="green"))
return layout
try:
with Live(generate_display(), refresh_per_second=2, console=console) as live:
while True:
time.sleep(0.5)
live.update(generate_display())
except KeyboardInterrupt:
console.print("\n[bold red]Stopping...[/]")
if all_latencies:
console.print(f"\n[bold green]✅ Collected {len(all_latencies):,} samples[/]")

View File

@ -44,7 +44,6 @@ Python-BPF is an LLVM IR generator for eBPF programs written in Python. It uses
Dependencies: Dependencies:
* `bpftool`
* `clang` * `clang`
* Python ≥ 3.8 * Python ≥ 3.8
@ -56,38 +55,6 @@ pip install pythonbpf pylibbpf
--- ---
## Try It Out!
#### First, generate the vmlinux.py file for your kernel:
- Install the required dependencies:
- On Ubuntu:
```bash
sudo apt-get install bpftool clang
pip install pythonbpf pylibbpf ctypeslib2
```
- Generate the `vmlinux.py` using:
```bash
sudo tools/vmlinux-gen.py
```
- Copy this file to `BCC-Examples/`
#### Next, install requirements for BCC-Examples:
- These requirements are only required for the python notebooks, vfsreadlat and container-monitor examples.
```bash
pip install -r BCC-Examples/requirements.txt
```
- Now, follow the instructions in the [BCC-Examples/README.md](https://github.com/pythonbpf/Python-BPF/blob/master/BCC-Examples/README.md) to run the examples.
#### To spin up jupyter notebook examples:
- Run and follow the instructions on screen
```bash
curl -s https://raw.githubusercontent.com/pythonbpf/Python-BPF/refs/heads/master/tools/setup.sh | sudo bash
```
- Check the jupyter server on the web browser and run the notebooks in the `BCC-Examples/` folder.
---
## Example Usage ## Example Usage
```python ```python
@ -115,15 +82,16 @@ def hist() -> HashMap:
@section("tracepoint/syscalls/sys_enter_clone") @section("tracepoint/syscalls/sys_enter_clone")
def hello(ctx: c_void_p) -> c_int64: def hello(ctx: c_void_p) -> c_int64:
process_id = pid() process_id = pid()
prev = hist.lookup(process_id) one = 1
prev = hist().lookup(process_id)
if prev: if prev:
previous_value = prev + 1 previous_value = prev + 1
print(f"count: {previous_value} with {process_id}") print(f"count: {previous_value} with {process_id}")
hist.update(process_id, previous_value) hist().update(process_id, previous_value)
return 0 return c_int64(0)
else: else:
hist.update(process_id, 1) hist().update(process_id, one)
return 0 return c_int64(0)
@bpf @bpf

13
TODO.md Normal file
View File

@ -0,0 +1,13 @@
## Short term
- Implement enough functionality to port the BCC tutorial examples in PythonBPF
- Static Typing
- Add all maps
- XDP support in pylibbpf
- ringbuf support
- recursive expression resolution
## Long term
- Refactor the codebase to be better than a hackathon project
- Port to C++ and use actual LLVM?

View File

@ -1,405 +0,0 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 4
[[package]]
name = "adler2"
version = "2.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "320119579fcad9c21884f5c4861d16174d0e06250625266f50fe6898340abefa"
[[package]]
name = "anstream"
version = "0.6.21"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "43d5b281e737544384e969a5ccad3f1cdd24b48086a0fc1b2a5262a26b8f4f4a"
dependencies = [
"anstyle",
"anstyle-parse",
"anstyle-query",
"anstyle-wincon",
"colorchoice",
"is_terminal_polyfill",
"utf8parse",
]
[[package]]
name = "anstyle"
version = "1.0.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5192cca8006f1fd4f7237516f40fa183bb07f8fbdfedaa0036de5ea9b0b45e78"
[[package]]
name = "anstyle-parse"
version = "0.2.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4e7644824f0aa2c7b9384579234ef10eb7efb6a0deb83f9630a49594dd9c15c2"
dependencies = [
"utf8parse",
]
[[package]]
name = "anstyle-query"
version = "1.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "40c48f72fd53cd289104fc64099abca73db4166ad86ea0b4341abe65af83dadc"
dependencies = [
"windows-sys",
]
[[package]]
name = "anstyle-wincon"
version = "3.0.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "291e6a250ff86cd4a820112fb8898808a366d8f9f58ce16d1f538353ad55747d"
dependencies = [
"anstyle",
"once_cell_polyfill",
"windows-sys",
]
[[package]]
name = "anyhow"
version = "1.0.100"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a23eb6b1614318a8071c9b2521f36b424b2c83db5eb3a0fead4a6c0809af6e61"
[[package]]
name = "bitflags"
version = "2.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "812e12b5285cc515a9c72a5c1d3b6d46a19dac5acfef5265968c166106e31dd3"
[[package]]
name = "blazesym"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ace0ab71bbe9a25cb82f6d0e513ae11aebd1a38787664475bb2ed5cbe2329736"
dependencies = [
"cpp_demangle",
"gimli",
"libc",
"memmap2",
"miniz_oxide",
"rustc-demangle",
]
[[package]]
name = "cc"
version = "1.2.46"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b97463e1064cb1b1c1384ad0a0b9c8abd0988e2a91f52606c80ef14aadb63e36"
dependencies = [
"find-msvc-tools",
"shlex",
]
[[package]]
name = "cfg-if"
version = "1.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9330f8b2ff13f34540b44e946ef35111825727b38d33286ef986142615121801"
[[package]]
name = "cfg_aliases"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "613afe47fcd5fac7ccf1db93babcb082c5994d996f20b8b159f2ad1658eb5724"
[[package]]
name = "clap"
version = "4.5.51"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4c26d721170e0295f191a69bd9a1f93efcdb0aff38684b61ab5750468972e5f5"
dependencies = [
"clap_builder",
"clap_derive",
]
[[package]]
name = "clap_builder"
version = "4.5.51"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "75835f0c7bf681bfd05abe44e965760fea999a5286c6eb2d59883634fd02011a"
dependencies = [
"anstream",
"anstyle",
"clap_lex",
"strsim",
]
[[package]]
name = "clap_derive"
version = "4.5.49"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2a0b5487afeab2deb2ff4e03a807ad1a03ac532ff5a2cee5d86884440c7f7671"
dependencies = [
"heck",
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "clap_lex"
version = "0.7.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a1d728cc89cf3aee9ff92b05e62b19ee65a02b5702cff7d5a377e32c6ae29d8d"
[[package]]
name = "colorchoice"
version = "1.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b05b61dc5112cbb17e4b6cd61790d9845d13888356391624cbe7e41efeac1e75"
[[package]]
name = "cpp_demangle"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0667304c32ea56cb4cd6d2d7c0cfe9a2f8041229db8c033af7f8d69492429def"
dependencies = [
"cfg-if",
]
[[package]]
name = "equivalent"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "877a4ace8713b0bcf2a4e7eec82529c029f1d0619886d18145fea96c3ffe5c0f"
[[package]]
name = "fallible-iterator"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2acce4a10f12dc2fb14a218589d4f1f62ef011b2d0cc4b3cb1bba8e94da14649"
[[package]]
name = "find-msvc-tools"
version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3a3076410a55c90011c298b04d0cfa770b00fa04e1e3c97d3f6c9de105a03844"
[[package]]
name = "gimli"
version = "0.32.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e629b9b98ef3dd8afe6ca2bd0f89306cec16d43d907889945bc5d6687f2f13c7"
dependencies = [
"fallible-iterator",
"indexmap",
"stable_deref_trait",
]
[[package]]
name = "hashbrown"
version = "0.16.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5419bdc4f6a9207fbeba6d11b604d481addf78ecd10c11ad51e76c2f6482748d"
[[package]]
name = "heck"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"
[[package]]
name = "indexmap"
version = "2.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6717a8d2a5a929a1a2eb43a12812498ed141a0bcfb7e8f7844fbdbe4303bba9f"
dependencies = [
"equivalent",
"hashbrown",
]
[[package]]
name = "is_terminal_polyfill"
version = "1.70.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a6cb138bb79a146c1bd460005623e142ef0181e3d0219cb493e02f7d08a35695"
[[package]]
name = "libbpf-rs"
version = "0.24.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "93edd9cd673087fa7518fd63ad6c87be2cd9b4e35034b1873f3e3258c018275b"
dependencies = [
"bitflags",
"libbpf-sys",
"libc",
"vsprintf",
]
[[package]]
name = "libbpf-sys"
version = "1.6.2+v1.6.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ba0346fc595fa2c8e274903e8a0e3ed5e6a29183af167567f6289fd3b116881b"
dependencies = [
"cc",
"nix",
"pkg-config",
]
[[package]]
name = "libc"
version = "0.2.177"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2874a2af47a2325c2001a6e6fad9b16a53b802102b528163885171cf92b15976"
[[package]]
name = "memmap2"
version = "0.9.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "744133e4a0e0a658e1374cf3bf8e415c4052a15a111acd372764c55b4177d490"
dependencies = [
"libc",
]
[[package]]
name = "miniz_oxide"
version = "0.8.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1fa76a2c86f704bdb222d66965fb3d63269ce38518b83cb0575fca855ebb6316"
dependencies = [
"adler2",
"simd-adler32",
]
[[package]]
name = "nix"
version = "0.30.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "74523f3a35e05aba87a1d978330aef40f67b0304ac79c1c00b294c9830543db6"
dependencies = [
"bitflags",
"cfg-if",
"cfg_aliases",
"libc",
]
[[package]]
name = "once_cell_polyfill"
version = "1.70.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "384b8ab6d37215f3c5301a95a4accb5d64aa607f1fcb26a11b5303878451b4fe"
[[package]]
name = "pkg-config"
version = "0.3.32"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7edddbd0b52d732b21ad9a5fab5c704c14cd949e5e9a1ec5929a24fded1b904c"
[[package]]
name = "plain"
version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b4596b6d070b27117e987119b4dac604f3c58cfb0b191112e24771b2faeac1a6"
[[package]]
name = "proc-macro2"
version = "1.0.103"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5ee95bc4ef87b8d5ba32e8b7714ccc834865276eab0aed5c9958d00ec45f49e8"
dependencies = [
"unicode-ident",
]
[[package]]
name = "blazesym-example"
version = "0.1.0"
dependencies = [
"anyhow",
"blazesym",
"clap",
"libbpf-rs",
"libc",
"plain",
]
[[package]]
name = "quote"
version = "1.0.42"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a338cc41d27e6cc6dce6cefc13a0729dfbb81c262b1f519331575dd80ef3067f"
dependencies = [
"proc-macro2",
]
[[package]]
name = "rustc-demangle"
version = "0.1.26"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "56f7d92ca342cea22a06f2121d944b4fd82af56988c270852495420f961d4ace"
[[package]]
name = "shlex"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0fda2ff0d084019ba4d7c6f371c95d8fd75ce3524c3cb8fb653a3023f6323e64"
[[package]]
name = "simd-adler32"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d66dc143e6b11c1eddc06d5c423cfc97062865baf299914ab64caa38182078fe"
[[package]]
name = "stable_deref_trait"
version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6ce2be8dc25455e1f91df71bfa12ad37d7af1092ae736f3a6cd0e37bc7810596"
[[package]]
name = "strsim"
version = "0.11.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7da8b5736845d9f2fcb837ea5d9e2628564b3b043a70948a3f0b778838c5fb4f"
[[package]]
name = "syn"
version = "2.0.110"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a99801b5bd34ede4cf3fc688c5919368fea4e4814a4664359503e6015b280aea"
dependencies = [
"proc-macro2",
"quote",
"unicode-ident",
]
[[package]]
name = "unicode-ident"
version = "1.0.22"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9312f7c4f6ff9069b165498234ce8be658059c6728633667c526e27dc2cf1df5"
[[package]]
name = "utf8parse"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06abde3611657adf66d383f00b093d7faecc7fa57071cce2578660c9f1010821"
[[package]]
name = "vsprintf"
version = "2.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "aec2f81b75ca063294776b4f7e8da71d1d5ae81c2b1b149c8d89969230265d63"
dependencies = [
"cc",
"libc",
]
[[package]]
name = "windows-link"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f0805222e57f7521d6a62e36fa9163bc891acd422f971defe97d64e70d0a4fe5"
[[package]]
name = "windows-sys"
version = "0.61.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ae137229bcbd6cdf0f7b80a31df61766145077ddf49416a728b02cb3921ff3fc"
dependencies = [
"windows-link",
]

View File

@ -1,14 +0,0 @@
[package]
name = "blazesym-example"
version = "0.1.0"
edition = "2024"
[dependencies]
libbpf-rs = "0.24"
blazesym = "0.2.0-rc.4"
anyhow = "1.0"
clap = { version = "4.5", features = ["derive"] }
libc = "0.2"
plain = "0.2"
[build-dependencies]

View File

@ -1,333 +0,0 @@
// src/main.rs - Fixed imports and error handling
use std::mem;
use std::path::PathBuf;
use std::time::Duration;
use anyhow::{anyhow, Context, Result};
use blazesym::symbolize::{CodeInfo, Input, Symbolized, Symbolizer};
use blazesym::symbolize::source::{Source, Kernel, Process};
use clap::Parser;
use libbpf_rs::{MapCore, ObjectBuilder, RingBufferBuilder}; // Added MapCore
// Match your Python struct exactly
#[repr(C)]
#[derive(Debug, Copy, Clone)]
struct ExecEvent {
pid: i64,
cpu: i32,
timestamp: i64,
comm: [u8; 16],
kstack_sz: i64,
ustack_sz: i64,
kstack: [u8; 128], // str(128) in Python
ustack: [u8; 128], // str(128) in Python
}
unsafe impl plain::Plain for ExecEvent {}
// Define perf_event constants (not in libc on all platforms)
const PERF_TYPE_HARDWARE: u32 = 0;
const PERF_TYPE_SOFTWARE: u32 = 1;
const PERF_COUNT_HW_CPU_CYCLES: u64 = 0;
const PERF_COUNT_SW_CPU_CLOCK: u64 = 0;
#[repr(C)]
struct PerfEventAttr {
type_: u32,
size: u32,
config: u64,
sample_period_or_freq: u64,
sample_type: u64,
read_format: u64,
flags: u64,
// ... rest can be zeroed
_padding: [u64; 64],
}
#[derive(Parser, Debug)]
struct Args {
/// Path to the BPF object file
#[arg(default_value = "stack_traces.o")]
object_file: PathBuf,
/// Sampling frequency
#[arg(short, long, default_value_t = 50)]
freq: u64,
/// Use software events
#[arg(long)]
sw_event: bool,
/// Verbose output
#[arg(short, long)]
verbose: bool,
}
fn open_perf_event(cpu: i32, freq: u64, sw_event: bool) -> Result<i32> {
let mut attr: PerfEventAttr = unsafe { mem::zeroed() };
attr.size = mem::size_of::<PerfEventAttr>() as u32;
attr.type_ = if sw_event {
PERF_TYPE_SOFTWARE
} else {
PERF_TYPE_HARDWARE
};
attr.config = if sw_event {
PERF_COUNT_SW_CPU_CLOCK
} else {
PERF_COUNT_HW_CPU_CYCLES
};
// Use frequency-based sampling
attr.sample_period_or_freq = freq;
attr.flags = 1 << 10; // freq = 1, disabled = 1
let fd = unsafe {
libc::syscall(
libc::SYS_perf_event_open,
&attr as *const _,
-1, // pid = -1 (all processes)
cpu, // cpu
-1, // group_fd
0, // flags
)
};
if fd < 0 {
Err(anyhow!("Failed to open perf event on CPU {}: {}", cpu,
std::io::Error::last_os_error()))
} else {
Ok(fd as i32)
}
}
fn print_stack_trace(
addrs: &[u64],
symbolizer: &Symbolizer,
pid: u32,
is_kernel: bool,
) {
if addrs.is_empty() {
return;
}
let src = if is_kernel {
Source::Kernel(Kernel::default())
} else {
Source::Process(Process::new(pid.into()))
};
let syms = match symbolizer.symbolize(&src, Input::AbsAddr(addrs)) {
Ok(syms) => syms,
Err(e) => {
eprintln!(" Failed to symbolize: {}", e);
for addr in addrs {
println!("0x{:016x}: <no-symbol>", addr);
}
return;
}
};
for (addr, sym) in addrs.iter().zip(syms.iter()) {
match sym {
Symbolized::Sym(sym_info) => {
print!("0x{:016x}: {} @ 0x{:x}+0x{:x}",
addr, sym_info.name, sym_info.addr, sym_info.offset);
if let Some(ref code_info) = sym_info.code_info {
print_code_info(code_info);
}
println!();
// Print inlined frames
for inlined in &sym_info.inlined {
print!(" {} (inlined)", inlined.name);
if let Some(ref code_info) = inlined.code_info {
print_code_info(code_info);
}
println!();
}
}
Symbolized::Unknown(..) => {
println!("0x{:016x}: <no-symbol>", addr);
}
}
}
}
fn print_code_info(code_info: &CodeInfo) {
let path = code_info.to_path();
let path_str = path.display();
match (code_info.line, code_info.column) {
(Some(line), Some(col)) => print!(" {}:{}:{}", path_str, line, col),
(Some(line), None) => print!(" {}:{}", path_str, line),
(None, _) => print!(" {}", path_str),
}
}
fn handle_event(symbolizer: &Symbolizer, data: &[u8]) -> i32 {
let event = plain::from_bytes::<ExecEvent>(data).expect("Invalid event data");
// Extract comm string
let comm = std::str::from_utf8(&event.comm)
.unwrap_or("<unknown>")
.trim_end_matches('\0');
println!("[{:.9}] COMM: {} (pid={}) @ CPU {}",
event.timestamp as f64 / 1_000_000_000.0,
comm,
event.pid,
event.cpu);
// Handle kernel stack
if event.kstack_sz > 0 {
println!("Kernel:");
let num_frames = (event.kstack_sz / 8) as usize;
let kstack_u64 = unsafe {
std::slice::from_raw_parts(
event.kstack.as_ptr() as *const u64,
num_frames.min(16),
)
};
// Filter out zero addresses
let kstack: Vec<u64> = kstack_u64.iter()
.copied()
.take_while(|&addr| addr != 0)
.collect();
print_stack_trace(&kstack, symbolizer, 0, true);
} else {
println!("No Kernel Stack");
}
// Handle user stack
if event.ustack_sz > 0 {
println!("Userspace:");
let num_frames = (event.ustack_sz / 8) as usize;
let ustack_u64 = unsafe {
std::slice::from_raw_parts(
event.ustack.as_ptr() as *const u64,
num_frames.min(16),
)
};
// Filter out zero addresses
let ustack: Vec<u64> = ustack_u64.iter()
.copied()
.take_while(|&addr| addr != 0)
.collect();
print_stack_trace(&ustack, symbolizer, event.pid as u32, false);
} else {
println!("No Userspace Stack");
}
println!();
0
}
fn main() -> Result<()> {
let args = Args::parse();
if !args.object_file.exists() {
return Err(anyhow!("Object file not found: {:?}", args.object_file));
}
println!("Loading BPF object: {:?}", args.object_file);
// Load BPF object
let mut obj_builder = ObjectBuilder::default();
obj_builder.debug(args.verbose);
let open_obj = obj_builder
.open_file(&args.object_file)
.context("Failed to open BPF object")?;
let mut obj = open_obj.load().context("Failed to load BPF object")?;
println!("✓ BPF object loaded");
// Find the program
let prog = obj
.progs_mut()
.find(|p| p.name() == "trace_exec_enter")
.ok_or_else(|| anyhow!("Program 'trace_exec_enter' not found"))?;
println!("✓ Found program: trace_exec_enter");
// Find the map
let map = obj
.maps()
.find(|m| m.name() == "exec_events")
.ok_or_else(|| anyhow!("Map 'exec_events' not found"))?;
println!("✓ Found map: exec_events");
// Get number of CPUs
let num_cpus = libbpf_rs::num_possible_cpus()?;
println!("✓ Detected {} CPUs\n", num_cpus);
// Open perf events and attach BPF program
println!("Setting up perf events...");
let mut links = Vec::new();
for cpu in 0..num_cpus {
match open_perf_event(cpu as i32, args.freq, args.sw_event) {
Ok(perf_fd) => {
match prog.attach_perf_event(perf_fd) {
Ok(link) => {
links.push(link);
if args.verbose {
println!(" ✓ Attached to CPU {}", cpu);
}
}
Err(e) => {
eprintln!(" ✗ Failed to attach to CPU {}: {}", cpu, e);
unsafe { libc::close(perf_fd); }
}
}
}
Err(e) => {
if args.verbose {
eprintln!(" ✗ Failed to open perf event on CPU {}: {}", cpu, e);
}
}
}
}
println!("✓ Attached to {} CPUs\n", links.len());
if links.is_empty() {
return Err(anyhow!("Failed to attach to any CPU"));
}
// Initialize symbolizer
let symbolizer = Symbolizer::new();
// Set up ring buffer
let mut builder = RingBufferBuilder::new();
builder.add(&map, move |data: &[u8]| -> i32 {
handle_event(&symbolizer, data)
})?;
let ringbuf = builder.build()?;
println!("========================================");
println!("Profiling started. Press Ctrl+C to stop.");
println!("========================================\n");
// Poll for events - just keep polling until error
loop {
if let Err(e) = ringbuf.poll(Duration::from_millis(100)) {
// Any error breaks the loop (including Ctrl+C)
eprintln!("\nStopping: {}", e);
break;
}
}
println!("Done.");
Ok(())
}

View File

@ -1,49 +0,0 @@
# tests/passing_tests/ringbuf_advanced.py
from pythonbpf import bpf, map, section, bpfglobal, struct, compile
from pythonbpf.maps import RingBuffer
from pythonbpf.helper import ktime, pid, smp_processor_id, comm, get_stack
from ctypes import c_void_p, c_int32, c_int64
import logging
@bpf
@struct
class exec_event:
pid: c_int64
cpu: c_int32
timestamp: c_int64
comm: str(16) # type: ignore [valid-type]
kstack_sz: c_int64
ustack_sz: c_int64
kstack: str(128) # type: ignore [valid-type]
ustack: str(128) # type: ignore [valid-type]
@bpf
@map
def exec_events() -> RingBuffer:
return RingBuffer(max_entries=1048576)
@bpf
@section("perf_event")
def trace_exec_enter(ctx: c_void_p) -> c_int64:
evt = exec_event()
evt.pid = pid()
evt.cpu = smp_processor_id()
evt.timestamp = ktime()
comm(evt.comm)
evt.kstack_sz = get_stack(evt.kstack)
evt.ustack_sz = get_stack(evt.ustack, 256)
exec_events.output(evt)
print(f"Submitted exec_event for pid: {evt.pid}, cpu: {evt.cpu}")
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
compile(logging.INFO)

View File

@ -1,20 +0,0 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = .
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@ -1,52 +0,0 @@
# PythonBPF Documentation
This directory contains the Sphinx documentation for PythonBPF.
## Building the Documentation
### Prerequisites
Install the documentation dependencies:
**Using uv (recommended):**
```bash
uv pip install -r requirements.txt
# Or install the optional docs dependencies
uv pip install pythonbpf[docs]
```
**Using pip:**
```bash
pip install -r requirements.txt
# Or install the optional docs dependencies
pip install pythonbpf[docs]
```
### Build HTML Documentation
```bash
make html
```
The generated documentation will be in `_build/html/`. Open `_build/html/index.html` in a browser to view.
### Other Build Formats
```bash
make latexpdf # Build PDF documentation
make epub # Build ePub format
make clean # Clean build artifacts
```
## Documentation Structure
- `index.md` - Main landing page
- `getting-started/` - Installation and quick start guides
- `user-guide/` - Comprehensive user documentation
- `api/` - API reference documentation
- `conf.py` - Sphinx configuration
- `_static/` - Static files (images, CSS, etc.)
## Writing Documentation
Documentation is written in Markdown using [MyST-Parser](https://myst-parser.readthedocs.io/). See the existing files for examples.

View File

View File

@ -1,471 +0,0 @@
# API Reference
This section provides detailed API documentation for all PythonBPF modules, classes, and functions.
## Module Overview
PythonBPF is organized into several modules:
* `pythonbpf` - Main module with decorators and compilation functions
* `pythonbpf.maps` - BPF map types
* `pythonbpf.helper` - BPF helper functions
* `pythonbpf.structs` - Struct type handling
* `pythonbpf.codegen` - Code generation and compilation
## Public API
The main `pythonbpf` module exports the following public API:
```python
from pythonbpf import (
# Decorators
bpf,
map,
section,
bpfglobal,
struct,
# Compilation
compile_to_ir,
compile,
BPF,
# Utilities
trace_pipe,
trace_fields,
)
```
## Decorators
```{eval-rst}
.. automodule:: pythonbpf.decorators
:members:
:undoc-members:
:show-inheritance:
```
### bpf
```python
@bpf
def my_function():
pass
```
Decorator to mark a function or class for BPF compilation. Any function or class decorated with `@bpf` will be processed by the PythonBPF compiler.
**See also:** {doc}`../user-guide/decorators`
### map
```python
@bpf
@map
def my_map() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=1024)
```
Decorator to mark a function as a BPF map definition. The function must return a map type.
**See also:** {doc}`../user-guide/maps`
### section
```python
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def trace_open(ctx: c_void_p) -> c_int64:
return c_int64(0)
```
Decorator to specify which kernel hook to attach the BPF program to.
**Parameters:**
* `name` (str) - The section name (e.g., "tracepoint/...", "kprobe/...", "xdp")
**See also:** {doc}`../user-guide/decorators`
### bpfglobal
```python
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
```
Decorator to mark a function as a BPF global variable definition.
**See also:** {doc}`../user-guide/decorators`
### struct
```python
@bpf
@struct
class Event:
timestamp: c_uint64
pid: c_uint32
```
Decorator to mark a class as a BPF struct definition.
**See also:** {doc}`../user-guide/structs`
## Compilation Functions
```{eval-rst}
.. automodule:: pythonbpf.codegen
:members: compile_to_ir, compile, BPF
:undoc-members:
:show-inheritance:
```
### compile_to_ir()
```python
def compile_to_ir(
filename: str,
output: str,
loglevel=logging.WARNING
) -> None
```
Compile Python source to LLVM Intermediate Representation.
**Parameters:**
* `filename` (str) - Path to the Python source file
* `output` (str) - Path for the output LLVM IR file (.ll)
* `loglevel` - Logging level (default: logging.WARNING)
**See also:** {doc}`../user-guide/compilation`
### compile()
```python
def compile(
filename: str = None,
output: str = None,
loglevel=logging.WARNING
) -> None
```
Compile Python source to BPF object file.
**Parameters:**
* `filename` (str, optional) - Path to the Python source file (default: calling file)
* `output` (str, optional) - Path for the output object file (default: same name with .o extension)
* `loglevel` - Logging level (default: logging.WARNING)
**See also:** {doc}`../user-guide/compilation`
### BPF
```python
class BPF:
def __init__(
self,
filename: str = None,
loglevel=logging.WARNING
)
def load(self) -> BpfObject
def attach_all(self) -> None
def load_and_attach(self) -> BpfObject
```
High-level interface to compile, load, and attach BPF programs.
**Parameters:**
* `filename` (str, optional) - Path to Python source file (default: calling file)
* `loglevel` - Logging level (default: logging.WARNING)
**Methods:**
* `load()` - Load the compiled BPF program into the kernel
* `attach_all()` - Attach all BPF programs to their hooks
* `load_and_attach()` - Convenience method that loads and attaches
**See also:** {doc}`../user-guide/compilation`
## Utilities
```{eval-rst}
.. automodule:: pythonbpf.utils
:members:
:undoc-members:
:show-inheritance:
```
### trace_pipe()
```python
def trace_pipe() -> None
```
Read and display output from the kernel trace pipe.
Blocks until interrupted with Ctrl+C. Displays BPF program output from `print()` statements.
**See also:** {doc}`../user-guide/helpers`
### trace_fields()
```python
def trace_fields() -> tuple
```
Parse one line from the trace pipe into structured fields.
**Returns:** Tuple of `(task, pid, cpu, flags, timestamp, message)`
* `task` (str) - Task/process name
* `pid` (int) - Process ID
* `cpu` (int) - CPU number
* `flags` (bytes) - Trace flags
* `timestamp` (float) - Timestamp in seconds
* `message` (str) - The trace message
**See also:** {doc}`../user-guide/helpers`
## Map Types
```{eval-rst}
.. automodule:: pythonbpf.maps.maps
:members:
:undoc-members:
:show-inheritance:
```
### HashMap
```python
class HashMap:
def __init__(
self,
key,
value,
max_entries: int
)
def lookup(self, key)
def update(self, key, value, flags=None)
def delete(self, key)
```
Hash map for efficient key-value storage.
**Parameters:**
* `key` - The type of the key (ctypes type or struct)
* `value` - The type of the value (ctypes type or struct)
* `max_entries` (int) - Maximum number of entries
**Methods:**
* `lookup(key)` - Look up a value by key
* `update(key, value, flags=None)` - Update or insert a key-value pair
* `delete(key)` - Remove an entry from the map
**See also:** {doc}`../user-guide/maps`
### PerfEventArray
```python
class PerfEventArray:
def __init__(
self,
key_size,
value_size
)
def output(self, data)
```
Perf event array for sending data to userspace.
**Parameters:**
* `key_size` - Type for the key
* `value_size` - Type for the value
**Methods:**
* `output(data)` - Send data to userspace
**See also:** {doc}`../user-guide/maps`
### RingBuffer
```python
class RingBuffer:
def __init__(self, max_entries: int)
def output(self, data, flags=0)
def reserve(self, size: int)
def submit(self, data, flags=0)
def discard(self, data, flags=0)
```
Ring buffer for efficient event delivery.
**Parameters:**
* `max_entries` (int) - Maximum size in bytes (must be power of 2)
**Methods:**
* `output(data, flags=0)` - Send data to the ring buffer
* `reserve(size)` - Reserve space in the buffer
* `submit(data, flags=0)` - Submit previously reserved space
* `discard(data, flags=0)` - Discard previously reserved space
**See also:** {doc}`../user-guide/maps`
## Helper Functions
```{eval-rst}
.. automodule:: pythonbpf.helper.helpers
:members:
:undoc-members:
:show-inheritance:
```
### Process Information
* `pid()` - Get current process ID
* `comm(buf)` - Get current process command name (requires buffer parameter)
* `uid()` - Get current user ID
### Time
* `ktime()` - Get current kernel time in nanoseconds
### CPU
* `smp_processor_id()` - Get current CPU ID
### Memory
* `probe_read(dst, size, src)` - Safely read kernel memory
* `probe_read_str(dst, src)` - Safely read string from kernel memory
* `deref(ptr)` - Dereference a pointer
### Random
* `random()` - Get pseudo-random number
**See also:** {doc}`../user-guide/helpers`
## Type System
PythonBPF uses Python's `ctypes` module for type definitions:
### Integer Types
* `c_int8`, `c_int16`, `c_int32`, `c_int64` - Signed integers
* `c_uint8`, `c_uint16`, `c_uint32`, `c_uint64` - Unsigned integers
### Other Types
* `c_char`, `c_bool` - Characters and booleans
* `c_void_p` - Void pointers
* `str(N)` - Fixed-length strings
## Examples
### Basic Usage
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def hello(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load_and_attach()
trace_pipe()
```
### With Maps
```python
from pythonbpf import bpf, map, section, bpfglobal, BPF
from pythonbpf.maps import HashMap
from pythonbpf.helper import pid
from ctypes import c_void_p, c_int64, c_uint32, c_uint64
@bpf
@map
def counters() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=256)
@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def count_clones(ctx: c_void_p) -> c_int64:
process_id = pid()
count = counters.lookup(process_id)
if count:
counters.update(process_id, count + 1)
else:
counters.update(process_id, 1)
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load_and_attach()
```
### With Structs
```python
from pythonbpf import bpf, struct, map, section, bpfglobal, BPF
from pythonbpf.maps import RingBuffer
from pythonbpf.helper import pid, ktime, comm
from ctypes import c_void_p, c_int64, c_uint32, c_uint64
@bpf
@struct
class Event:
timestamp: c_uint64
pid: c_uint32
comm: str(16)
@bpf
@map
def events() -> RingBuffer:
return RingBuffer(max_entries=4096)
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def track_exec(ctx: c_void_p) -> c_int64:
event = Event()
event.timestamp = ktime()
event.pid = pid()
comm(event.comm)
events.output(event)
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load_and_attach()
```
## See Also
* {doc}`../user-guide/index` - Comprehensive user guide
* {doc}`../getting-started/quickstart` - Quick start tutorial
* [GitHub Repository](https://github.com/pythonbpf/Python-BPF) - Source code and examples

View File

@ -1,105 +0,0 @@
# Configuration file for the Sphinx documentation builder.
#
# For the full list of built-in configuration values, see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
import os
import sys
# Add the parent directory to the path so we can import pythonbpf
sys.path.insert(0, os.path.abspath(".."))
# -- Project information -----------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
project = "PythonBPF"
copyright = "2026, Pragyansh Chaturvedi, Varun Mallya"
author = "Pragyansh Chaturvedi, Varun Mallya"
release = "0.1.8"
version = "0.1.8"
# -- General configuration ---------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
extensions = [
"myst_parser",
"sphinx.ext.autodoc",
"sphinx.ext.napoleon",
"sphinx.ext.viewcode",
"sphinx.ext.intersphinx",
"sphinx_copybutton",
]
# MyST-Parser configuration
myst_enable_extensions = [
"colon_fence",
"deflist",
"fieldlist",
]
# Napoleon settings for Google/NumPy style docstrings
napoleon_google_docstring = True
napoleon_numpy_docstring = True
napoleon_include_init_with_doc = True
napoleon_include_private_with_doc = False
napoleon_include_special_with_doc = True
napoleon_use_admonition_for_examples = True
napoleon_use_admonition_for_notes = True
napoleon_use_admonition_for_references = False
napoleon_use_ivar = False
napoleon_use_param = True
napoleon_use_rtype = True
napoleon_type_aliases = None
# Intersphinx mapping
intersphinx_mapping = {
"python": ("https://docs.python.org/3", None),
"llvmlite": ("https://llvmlite.readthedocs.io/en/latest/", None),
}
templates_path = ["_templates"]
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
# Source file suffixes
source_suffix = {
".rst": "restructuredtext",
".md": "markdown",
}
# The master toctree document
master_doc = "index"
# -- Options for HTML output -------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
html_theme = "sphinx_rtd_theme"
html_static_path = ["_static"]
# Theme options
html_theme_options = {
"logo_only": False,
"display_version": True,
"prev_next_buttons_location": "bottom",
"style_external_links": False,
"vcs_pageview_mode": "",
# Toc options
"collapse_navigation": False,
"sticky_navigation": True,
"navigation_depth": 4,
"includehidden": True,
"titles_only": False,
}
# -- Options for autodoc -----------------------------------------------------
autodoc_default_options = {
"members": True,
"member-order": "bysource",
"special-members": "__init__",
"undoc-members": True,
"exclude-members": "__weakref__",
}
autodoc_typehints = "description"
exclude_patterns = ["README.md"]

View File

@ -1,35 +0,0 @@
# Getting Started
Welcome to PythonBPF! This section will help you get started with writing eBPF programs in Python.
## What You'll Learn
In this section, you'll learn how to:
1. **Install PythonBPF** - Set up your development environment with all necessary dependencies
2. **Write Your First Program** - Create a simple BPF program to understand the basics
3. **Understand Core Concepts** - Learn about decorators, compilation, and program structure
## Prerequisites
Before you begin, make sure you have:
* A Linux system (eBPF requires Linux kernel 4.15+)
* Python 3.10 or higher
* Root or sudo access (required for loading BPF programs)
## Next Steps
After completing the getting started guide, you can:
* Explore the {doc}`../user-guide/index` for detailed information on features
* Check out the {doc}`../api/index`
* Browse the [examples directory](https://github.com/pythonbpf/Python-BPF/tree/master/examples) and the [BCC examples directory](https://github.com/pythonbpf/Python-BPF/tree/master/BCC-Examples)
## Need Help?
If you encounter any issues:
* Check the [GitHub Issues](https://github.com/pythonbpf/Python-BPF/issues) for known problems
* Review the [README](https://github.com/pythonbpf/Python-BPF/blob/master/README.md) for additional information
* Reach out to the maintainers: [@r41k0u](https://github.com/r41k0u) and [@varun-r-mallya](https://github.com/varun-r-mallya)

View File

@ -1,182 +0,0 @@
# Installation
This guide will walk you through installing PythonBPF and its dependencies.
## Prerequisites
### System Requirements
PythonBPF requires:
* **Linux** - eBPF is a Linux kernel feature (kernel 4.15 or higher recommended)
* **Python 3.10+** - Python 3.10 or higher is required
* **Root/sudo access** - Loading BPF programs into the kernel requires elevated privileges
### Required System Packages
Before installing PythonBPF, you need to install the following system packages:
#### On Ubuntu/Debian:
```bash
sudo apt-get update
sudo apt-get install -y bpftool clang llvm
```
#### On Fedora/RHEL/CentOS:
```bash
sudo dnf install -y bpftool clang llvm
```
#### On Arch Linux:
```bash
sudo pacman -S bpf clang llvm
```
## Installing PythonBPF
### From PyPI (Recommended)
The easiest way to install PythonBPF is using uv or pip:
**Using uv (recommended):**
```bash
uv pip install pythonbpf pylibbpf
```
**Using pip:**
```bash
pip install pythonbpf pylibbpf
```
This will install:
* `pythonbpf` - The main package for writing and compiling BPF programs
* `pylibbpf` - Python bindings for libbpf, used to load and attach BPF programs
### Development Installation
If you want to contribute to PythonBPF or work with the latest development version:
1. Clone the repository:
```bash
git clone https://github.com/pythonbpf/Python-BPF.git
cd Python-BPF
```
2. Create and activate a virtual environment:
```bash
python3 -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
```
3. Install in development mode:
**Using uv (recommended):**
```bash
uv pip install -e .
uv pip install pylibbpf
```
**Using pip:**
```bash
pip install -e .
pip install pylibbpf
```
4. Install development dependencies:
```bash
make install
```
### Installing Documentation Dependencies
If you want to build the documentation locally:
**Using uv (recommended):**
```bash
uv pip install pythonbpf[docs]
# Or from the repository root:
uv pip install -e .[docs]
```
**Using pip:**
```bash
pip install pythonbpf[docs]
# Or from the repository root:
pip install -e .[docs]
```
## Generating vmlinux.py
`vmlinux.py` contains the running kernel's data structures and is analogous to `vmlinux.h` included in eBPF programs written in C. Some examples require access to it. To use these features, you need to generate a `vmlinux.py` file:
1. Install additional dependencies:
**Using uv (recommended):**
```bash
uv pip install ctypeslib2
```
**Using pip:**
```bash
pip install ctypeslib2
```
2. Generate the vmlinux.py file:
```bash
sudo tools/vmlinux-gen.py
```
3. Copy the generated file to your working directory or the examples directory as needed.
```{warning}
The `vmlinux.py` file is kernel-specific. If you upgrade your kernel, you may need to regenerate this file.
```
## Verifying Installation
To verify that PythonBPF is installed correctly, run:
```bash
python3 -c "import pythonbpf; print(pythonbpf.__all__)"
```
You should see output similar to:
```
['bpf', 'map', 'section', 'bpfglobal', 'struct', 'compile_to_ir', 'compile', 'BPF', 'trace_pipe', 'trace_fields']
```
## Troubleshooting
### Permission Errors
If you encounter permission errors when running BPF programs:
* Make sure you're running with `sudo` or as root
* Check that `/sys/kernel/tracing/` is accessible
### LLVM/Clang Not Found
If you get errors about `llc` or `clang` not being found:
* Verify they're installed: `which llc` and `which clang`
* Check your PATH environment variable includes the LLVM bin directory
### Import Errors
If Python can't find the `pythonbpf` module:
* Make sure you've activated your virtual environment
* Verify installation with `uv pip list | grep pythonbpf` or `pip list | grep pythonbpf`
* Try reinstalling: `uv pip install --force-reinstall pythonbpf` or `pip install --force-reinstall pythonbpf`
## Next Steps
Now that you have PythonBPF installed, continue to the {doc}`quickstart` guide to write your first BPF program!

View File

@ -1,249 +0,0 @@
# Quick Start
This guide will walk you through creating your first BPF program with PythonBPF.
## Your First BPF Program
Let's create a simple "Hello World" program that prints a message every time a process is executed on your system.
### Step 1: Create the Program
Create a new file called `hello_world.py`:
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load()
b.attach_all()
trace_pipe()
```
### Step 2: Run the Program
Run the program with sudo (required for BPF operations):
```bash
sudo python3 hello_world.py
```
### Step 3: See it in Action
Open another terminal and run any command:
```bash
ls
echo "test"
date
```
You should see "Hello, World!" printed in the first terminal for each command executed!
Press `Ctrl+C` to stop the program.
## Understanding the Code
Let's break down what each part does:
### Imports
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
```
* `bpf` - Decorator to mark functions for BPF compilation
* `section` - Decorator to specify which kernel event to attach to
* `bpfglobal` - Decorator for BPF global variables
* `BPF` - Class to compile, load, and attach BPF programs
* `trace_pipe` - Utility to read kernel trace output (similar to BCC)
* `c_void_p`, `c_int64` - C types for function signatures
### The BPF Function
```python
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return 0
```
* `@bpf` - Marks this function to be compiled to BPF bytecode
* `@section("tracepoint/syscalls/sys_enter_execve")` - Attaches to the execve syscall tracepoint (called when processes start)
* `ctx: c_void_p` - Context parameter (required for all BPF functions)
* `print()` - the PythonBPF API for `bpf_printk` helper function
* `return 0` - BPF functions must return an integer
### License Declaration
```python
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
```
* The Linux kernel requires BPF programs to declare a license
* Most kernel features require GPL-compatible licenses
* This is defined as a BPF global variable
### Compilation and Execution
```python
b = BPF()
b.load()
b.attach_all()
trace_pipe()
```
* `BPF()` - Creates a BPF object and compiles the current file
* `b.load()` - Loads the compiled BPF program into the kernel
* `b.attach_all()` - Attaches all BPF programs to their specified hooks
* `trace_pipe()` - Reads and displays output from the kernel trace buffer
Alternatively, you can also use the `compile()` function to compile the BPF code to an object file:
```python
from pythonbpf import compile
```
This object file can then be loaded using any other userspace library in any language.
## Next Example: Tracking Process IDs
Let's make a more interesting program that tracks which processes are being created:
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from pythonbpf.helper import pid
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def track_exec(ctx: c_void_p) -> c_int64:
process_id = pid()
print(f"Process with PID: {process_id} is starting")
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load()
b.attach_all()
trace_pipe()
```
This program uses BPF helper functions:
* `pid()` - Gets the current process ID
Run it with `sudo python3 track_exec.py` and watch processes being created!
## Common Patterns
### Tracepoints
Tracepoints are predefined hooks in the kernel. Common ones include:
```python
# System calls
@section("tracepoint/syscalls/sys_enter_execve")
@section("tracepoint/syscalls/sys_enter_clone")
@section("tracepoint/syscalls/sys_enter_open")
# Scheduler events
@section("tracepoint/sched/sched_process_fork")
@section("tracepoint/sched/sched_switch")
```
### Kprobes
Kprobes allow you to attach to any kernel function:
```python
@section("kprobe/do_sys_open")
def trace_open(ctx: c_void_p) -> c_int64:
print("File is being opened")
return 0
```
### XDP (eXpress Data Path)
For network packet processing:
```python
from pythonbpf.helper import XDP_PASS
@section("xdp")
def xdp_pass(ctx: c_void_p) -> c_int64:
return XDP_PASS
```
## Best Practices
1. **Always include a LICENSE** - Required by the kernel
2. **Use type hints** - Required by PythonBPF to generate correct code
3. **Return the correct type** - Match the expected return type for your program type
4. **Test incrementally** - Start simple and add complexity gradually
5. **Check kernel logs** - Use `dmesg` to see BPF verifier messages if loading fails
## Common Issues
### Program Won't Load
If your BPF program fails to load:
* Check `dmesg` for verifier error messages
* Ensure your LICENSE is GPL-compatible
* Verify you're using supported BPF features
* Make sure return types match function signatures
### No Output
If you don't see output:
* Verify the tracepoint/kprobe is being triggered
* Check that you're running with sudo
* Ensure `/sys/kernel/tracing/trace_pipe` is accessible
### Compilation Errors
If compilation fails:
* Check that `llc` is installed and in your PATH
* Verify your Python syntax is correct
* Ensure all imported types are from `ctypes`
* In the worst case, compile object files manually using `compile_to_ir()` and `llc` to get detailed errors
### Verification Failure
If verification fails:
* Compile the object files using `compile()` function instead of loading directly
* Run `sudo check.sh check <bpf>.o` to get detailed verification output
## Next Steps
Now that you understand the basics, explore:
* {doc}`../user-guide/decorators` - Learn about all available decorators
* {doc}`../user-guide/maps` - Use BPF maps for data storage and communication
* {doc}`../user-guide/structs` - Define custom data structures
* {doc}`../user-guide/helpers` - Discover all available BPF helper functions
* [Examples directory](https://github.com/pythonbpf/Python-BPF/tree/master/examples) - See more complex examples

View File

@ -1,95 +0,0 @@
# PythonBPF Documentation
Welcome to **PythonBPF** - a Python frontend for writing eBPF programs without embedding C code. PythonBPF uses [llvmlite](https://github.com/numba/llvmlite) to generate LLVM IR and compiles directly to eBPF object files that can be loaded into the Linux kernel.
```{note}
This project is under active development.
```
## What is PythonBPF?
PythonBPF is an LLVM IR generator for eBPF programs written in Python. It provides:
* **Pure Python syntax** - Write eBPF programs in Python using familiar decorators and type annotations
* **Direct compilation** - Compile to LLVM object files without relying on BCC
* **Full eBPF features** - Support for maps, helpers, global definitions, and more
* **Integration with libbpf** - Works with [pylibbpf](https://github.com/pythonbpf/pylibbpf) for object loading and execution
## Quick Example
Here's a simple "Hello World" BPF program that traces process creation:
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load()
b.attach_all()
trace_pipe()
```
## Features
* Generate eBPF programs directly using Python syntax
* Compile to LLVM object files for kernel execution
* Built with `llvmlite` for IR generation
* Supports maps, helpers, and global definitions for BPF
* Companion project: [pylibbpf](https://github.com/pythonbpf/pylibbpf), which provides bindings for libbpf
## Table of Contents
```{toctree}
:maxdepth: 2
:caption: Getting Started
getting-started/index
getting-started/installation
getting-started/quickstart
```
```{toctree}
:maxdepth: 2
:caption: User Guide
user-guide/index
user-guide/decorators
user-guide/maps
user-guide/structs
user-guide/compilation
user-guide/helpers
```
```{toctree}
:maxdepth: 2
:caption: API Reference
api/index
```
## Links
* **GitHub Repository**: [pythonbpf/Python-BPF](https://github.com/pythonbpf/Python-BPF)
* **PyPI Package**: [pythonbpf](https://pypi.org/project/pythonbpf/)
* **Video Demo**: [YouTube](https://www.youtube.com/watch?v=eFVhLnWFxtE)
## License
PythonBPF is licensed under the Apache License 2.0.
## Indices and tables
* {ref}`genindex`
* {ref}`modindex`
* {ref}`search`

View File

@ -1,4 +0,0 @@
myst-parser>=2.0
sphinx>=7.0
sphinx-copybutton
sphinx-rtd-theme>=2.0

View File

@ -1,432 +0,0 @@
# Compilation
PythonBPF provides several functions and classes for compiling Python code into BPF bytecode and loading it into the kernel.
## Overview
The compilation process transforms Python code into executable BPF programs:
1. **Python AST** → LLVM IR generation (using llvmlite)
2. **LLVM IR** → BPF bytecode (using llc)
3. **BPF Object** → Kernel loading (using libbpf)
## Compilation Functions
### compile_to_ir()
Compile Python source to LLVM Intermediate Representation.
#### Signature
```python
def compile_to_ir(filename: str, output: str, loglevel=logging.WARNING)
```
#### Parameters
* `filename` - Path to the Python source file to compile
* `output` - Path where the LLVM IR file (.ll) should be written
* `loglevel` - Logging level (default: `logging.WARNING`)
#### Usage
```python
from pythonbpf import compile_to_ir
import logging
# Compile to LLVM IR
compile_to_ir(
filename="my_bpf_program.py",
output="my_bpf_program.ll",
loglevel=logging.DEBUG
)
```
#### Output
This function generates an `.ll` file containing LLVM IR, which is human-readable assembly-like code. This is useful for:
* Debugging compilation issues
* Understanding code generation
### compile()
Compile Python source to BPF object file.
#### Signature
```python
def compile(filename: str = None, output: str = None, loglevel=logging.WARNING)
```
#### Parameters
* `filename` - Path to the Python source file (default: calling file)
* `output` - Path for the output object file (default: same name with `.o` extension)
* `loglevel` - Logging level (default: `logging.WARNING`)
#### Usage
```python
from pythonbpf import compile
import logging
# Compile current file
compile()
# Compile specific file
compile(filename="my_program.py", output="my_program.o")
# Compile with debug logging
compile(loglevel=logging.DEBUG)
```
#### Output
This function generates a `.o` file containing BPF bytecode that can be:
* Loaded into the kernel
* Inspected with `bpftool`
* Verified with the BPF verifier
* Distributed as a compiled binary
### BPF Class
The `BPF` class provides a high-level interface to compile, load, and attach BPF programs.
#### Signature
```python
class BPF:
def __init__(self, filename: str = None, loglevel=logging.WARNING)
def load(self)
def attach_all(self)
def load_and_attach(self)
```
#### Parameters
* `filename` - Path to Python source file (default: calling file)
* `loglevel` - Logging level (default: `logging.WARNING`)
#### Methods
##### __init__()
Create a BPF object and compile the source.
```python
from pythonbpf import BPF
# Compile current file
b = BPF()
# Compile specific file
b = BPF(filename="my_program.py")
```
##### load()
Load the compiled BPF program into the kernel.
```python
b = BPF()
b.load()
```
This method:
* Loads the BPF object file into the kernel
* Creates maps
* Verifies the BPF program
* Returns a `BpfObject` instance
##### attach_all()
Attach all BPF programs to their specified hooks.
```python
b = BPF()
b.load()
b.attach_all()
```
This method:
* Attaches tracepoints
* Attaches kprobes/kretprobes
* Attaches XDP programs
* Enables all hooks
##### load_and_attach()
Convenience method that loads and attaches in one call.
```python
b = BPF()
b.load_and_attach()
```
Equivalent to:
```python
b = BPF()
b.load()
b.attach_all()
```
## Complete Example
Here's a complete example showing the compilation workflow:
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def trace_exec(ctx: c_void_p) -> c_int64:
print("Process started")
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
if __name__ == "__main__":
# Method 1: Simple compilation and loading
b = BPF()
b.load_and_attach()
trace_pipe()
# Method 2: Step-by-step
# b = BPF()
# b.load()
# b.attach_all()
# trace_pipe()
# Method 3: Manual compilation
# from pythonbpf import compile
# compile(filename="my_program.py", output="my_program.o")
# # Then load with pylibbpf directly
```
## Compilation Pipeline Details
### AST Parsing
The Python `ast` module parses your source code:
```python
import ast
tree = ast.parse(source_code, filename)
```
The AST is then walked to find:
* Functions decorated with `@bpf`
* Classes decorated with `@struct`
* Map definitions with `@map`
* Global variables with `@bpfglobal`
### IR Generation
PythonBPF uses `llvmlite` to generate LLVM IR:
```python
from llvmlite import ir
# Create module
module = ir.Module(name='bpf_module')
module.triple = 'bpf'
# Generate IR for each BPF function
# ...
```
Key aspects of IR generation:
* Type conversion (Python types → LLVM types)
* Function definitions
* Map declarations
* Global variable initialization
* Debug information
### BPF Compilation
The LLVM IR is compiled to BPF bytecode using `llc`:
```bash
llc -march=bpf -filetype=obj input.ll -o output.o
```
### Kernel Loading
The compiled object is loaded using `pylibbpf`:
```python
from pylibbpf import BpfObject
obj = BpfObject(path="program.o")
obj.load()
```
## Debugging Compilation
### Logging
Enable debug logging to see compilation details:
```python
import logging
from pythonbpf import BPF
b = BPF(loglevel=logging.DEBUG)
```
This will show:
* AST parsing details
* IR generation steps
* Compilation commands
* Loading status
### Inspecting LLVM IR
Generate and inspect the IR file:
```python
from pythonbpf import compile_to_ir
compile_to_ir("program.py", "program.ll")
```
Then examine `program.ll` to understand the generated code.
### Using bpftool
Inspect compiled objects with `bpftool`:
```bash
# Show program info
bpftool prog show
# Dump program instructions
bpftool prog dump xlated id <ID>
# Dump program JIT code
bpftool prog dump jited id <ID>
# Show maps
bpftool map show
# Dump map contents
bpftool map dump id <ID>
```
### Verifier Errors
If the kernel verifier rejects your program:
* Check `dmesg` for detailed error messages:
```bash
sudo dmesg | tail -50
```
## Compilation Options
### Optimization Levels
While PythonBPF doesn't expose optimization flags directly, you can:
1. Manually compile IR with specific flags:
```bash
llc -march=bpf -O2 -filetype=obj program.ll -o program.o
```
2. Modify the compilation pipeline in your code
### Debug Information
PythonBPF automatically generates debug information (DWARF) for:
* Function names
* Variable names
* Type information
This helps with:
* Stack traces
* Debugging with `bpftool`
* Source-level debugging
## Working with Compiled Objects
### Loading Pre-compiled Objects
You can load previously compiled objects:
```python
from pylibbpf import BpfObject
# Load object file
obj = BpfObject(path="my_program.o")
obj.load()
# Attach programs
# (specific attachment depends on program type)
```
### Distribution
Distribute compiled BPF objects:
1. Compile once:
```python
from pythonbpf import compile
compile(filename="program.py", output="program.o")
```
2. Ship `program.o` file
3. Load on target systems:
```python
from pylibbpf import BpfObject
obj = BpfObject(path="program.o")
obj.load()
```
### Version Compatibility
BPF objects are generally compatible across kernel versions, but:
* Some features require specific kernel versions
* Helper functions may not be available on older kernels
* BTF (BPF Type Format) requirements vary
## Troubleshooting
### Compilation Fails
If compilation fails:
* Check Python syntax
* Verify all decorators are correct
* Ensure type hints are present
* Check for unsupported Python features
### Loading Fails
If loading fails:
* Check `dmesg` for verifier errors
* Verify LICENSE is set correctly
* Ensure helper functions are valid
* Check map definitions
### Programs Don't Attach
If attachment fails:
* Verify section names are correct
* Check that hooks exist on your kernel
* Ensure you have sufficient permissions
* Verify kernel version supports the feature
## Next Steps
* Learn about {doc}`helpers` for available BPF helper functions
* Explore {doc}`maps` for data storage
* See {doc}`decorators` for compilation markers

View File

@ -1,448 +0,0 @@
# Decorators
Decorators are the primary way to mark Python code for BPF compilation. PythonBPF provides five core decorators that control how your code is transformed into eBPF bytecode.
## @bpf
The `@bpf` decorator marks functions or classes for BPF compilation.
### Usage
```python
from pythonbpf import bpf
@bpf
def my_function(ctx):
# This function will be compiled to BPF bytecode
pass
```
### Description
Any function or class decorated with `@bpf` will be processed by the PythonBPF compiler and transformed into LLVM IR, then compiled to BPF bytecode. This is the fundamental decorator that enables BPF compilation.
### Rules
* Must be used on top-level functions or classes
* The function must have proper type hints
* Return types must be BPF-compatible
* Only BPF-compatible operations are allowed inside
### Example
```python
from pythonbpf import bpf, section
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def trace_exec(ctx: c_void_p) -> c_int64:
print("Process started")
return c_int64(0)
```
## @section
The `@section(name)` decorator specifies which kernel hook to attach the BPF program to.
### Usage
```python
from pythonbpf import bpf, section
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def trace_open(ctx):
pass
```
### Section Types
#### Tracepoints
Tracepoints are stable kernel hooks defined in `/sys/kernel/tracing/events/`:
```python
# System call tracepoints
@section("tracepoint/syscalls/sys_enter_execve")
@section("tracepoint/syscalls/sys_enter_clone")
@section("tracepoint/syscalls/sys_enter_open")
@section("tracepoint/syscalls/sys_exit_read")
# Scheduler tracepoints
@section("tracepoint/sched/sched_process_fork")
@section("tracepoint/sched/sched_process_exit")
@section("tracepoint/sched/sched_switch")
# Block I/O tracepoints
@section("tracepoint/block/block_rq_insert")
@section("tracepoint/block/block_rq_complete")
```
#### Kprobes
Kprobes allow attaching to any kernel function:
```python
@section("kprobe/do_sys_open")
def trace_sys_open(ctx):
pass
@section("kprobe/__x64_sys_write")
def trace_write(ctx):
pass
```
#### Kretprobes
Kretprobes trigger when a kernel function returns:
```python
@section("kretprobe/do_sys_open")
def trace_open_return(ctx):
pass
```
#### XDP (eXpress Data Path)
For network packet processing at the earliest point:
```python
from pythonbpf.helper import XDP_PASS
from ctypes import c_void_p, c_int64
@section("xdp")
def xdp_prog(ctx: c_void_p) -> c_int64:
# XDP_PASS, XDP_DROP, XDP_ABORTED constants available from pythonbpf.helper
return XDP_PASS
```
### Finding Tracepoints
To find available tracepoints on your system:
```bash
# List all tracepoints
ls /sys/kernel/tracing/events/
# List syscall tracepoints
ls /sys/kernel/tracing/events/syscalls/
# View tracepoint format
cat /sys/kernel/tracing/events/syscalls/sys_enter_open/format
```
## @map
The `@map` decorator marks a function as a BPF map definition.
### Usage
```python
from pythonbpf import bpf, map
from pythonbpf.maps import HashMap
from ctypes import c_uint32, c_uint64
@bpf
@map
def my_map() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=1024)
```
### Description
Maps are BPF data structures used to:
* Store state between BPF program invocations
* Communicate data between BPF programs
* Share data with userspace
The function must return a map type (HashMap, PerfEventArray, RingBuffer) and the return type must be annotated.
### Example
```python
from pythonbpf import bpf, map, section
from pythonbpf.maps import HashMap
from pythonbpf.helper import pid
from ctypes import c_void_p, c_int64, c_uint32, c_uint64
@bpf
@map
def process_count() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=4096)
@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def count_clones(ctx: c_void_p) -> c_int64:
process_id = pid()
count = process_count.lookup(process_id)
if count:
process_count.update(process_id, count + 1)
else:
process_count.update(process_id, c_uint64(1))
return 0
```
See {doc}`maps` for more details on available map types.
## @struct
The `@struct` decorator marks a class as a BPF struct definition.
### Usage
```python
from pythonbpf import bpf, struct
from ctypes import c_uint64, c_uint32
@bpf
@struct
class Event:
timestamp: c_uint64
pid: c_uint32
cpu: c_uint32
```
### Description
Structs allow you to define custom data types for use in BPF programs. They can be used:
* As map keys and values
* For perf event output
* In ring buffer submissions
* As local variables
### Field Types
Supported field types include:
* **Integer types**: `c_int8`, `c_int16`, `c_int32`, `c_int64`, `c_uint8`, `c_uint16`, `c_uint32`, `c_uint64`
* **Pointers**: `c_void_p`, `c_char_p`
* **Fixed strings**: `str(N)` where N is the size (e.g., `str(16)`)
* **Nested structs**: Other `@struct` decorated classes
### Example
```python
from pythonbpf import bpf, struct, map, section
from pythonbpf.maps import RingBuffer
from pythonbpf.helper import pid, ktime
from ctypes import c_void_p, c_int64, c_uint64, c_uint32
@bpf
@struct
class ProcessEvent:
timestamp: c_uint64
pid: c_uint32
comm: str(16)
@bpf
@map
def events() -> RingBuffer:
return RingBuffer(max_entries=4096)
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def track_processes(ctx: c_void_p) -> c_int64:
event = ProcessEvent()
event.timestamp = ktime()
event.pid = pid()
comm(event.comm) # Fills event.comm with process name
events.output(event)
return 0
```
See {doc}`structs` for more details on working with structs.
## @bpfglobal
The `@bpfglobal` decorator marks a function as a BPF global variable definition.
### Usage
```python
from pythonbpf import bpf, bpfglobal
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
```
### Description
BPF global variables are values that:
* Are initialized when the program loads
* Can be read by all BPF functions
* Must be constant (cannot be modified at runtime in current implementation)
### Common Global Variables
#### LICENSE (Required)
Every BPF program must declare a license:
```python
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
```
Valid licenses include:
* `"GPL"` - GNU General Public License
* `"GPL v2"` - GPL version 2
* `"Dual BSD/GPL"` - Dual licensed
* `"Dual MIT/GPL"` - Dual licensed
```{warning}
Many BPF features require a GPL-compatible license. Using a non-GPL license may prevent your program from loading or accessing certain kernel features.
```
#### Custom Global Variables
You can define other global variables:
```python
@bpf
@bpfglobal
def DEBUG_MODE() -> int:
return 1
@bpf
@bpfglobal
def MAX_EVENTS() -> int:
return 1000
```
These can be referenced in your BPF functions, though modifying them at runtime is currently not supported.
## Combining Decorators
Decorators are often used together. The order matters:
### Correct Order
```python
@bpf # Always first
@section("...") # Section before other decorators
def my_function():
pass
@bpf # Always first
@map # Map/struct/bpfglobal after @bpf
def my_map():
pass
@bpf # Always first
@struct # Map/struct/bpfglobal after @bpf
class MyStruct:
pass
@bpf # Always first
@bpfglobal # Map/struct/bpfglobal after @bpf
def LICENSE():
return "GPL"
```
### Examples by Use Case
#### Simple Tracepoint
```python
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def trace_open(ctx: c_void_p) -> c_int64:
return c_int64(0)
```
#### Map Definition
```python
@bpf
@map
def counters() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=256)
```
#### Struct Definition
```python
@bpf
@struct
class Event:
timestamp: c_uint64
value: c_uint32
```
#### Global Variable
```python
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
```
## Best Practices
1. **Always use @bpf first** - It must be the outermost decorator
2. **Provide type hints** - Required for proper code generation
3. **Test incrementally** - Verify each component works before combining
## Common Errors
### Missing @bpf Decorator
```python
# Wrong - missing @bpf
@section("tracepoint/syscalls/sys_enter_open")
def my_func(ctx):
pass
# Correct
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def my_func(ctx):
pass
```
### Wrong Decorator Order
```python
# Wrong - @section before @bpf
@section("tracepoint/syscalls/sys_enter_open")
@bpf
def my_func(ctx):
pass
# Correct
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def my_func(ctx):
pass
```
### Missing Type Hints
```python
# Wrong - no type hints
@bpf
def my_func(ctx):
pass
# Correct
@bpf
def my_func(ctx: c_void_p) -> c_int64:
pass
```
## Next Steps
* Learn about {doc}`maps` for data storage and communication
* Explore {doc}`structs` for defining custom data types
* Understand {doc}`compilation` to see how code is transformed
* Check out {doc}`helpers` for available BPF helper functions

View File

@ -1,503 +0,0 @@
# Helper Functions and Utilities
PythonBPF provides helper functions and utilities for BPF programs and userspace code.
```{note}
**Work in Progress:** PythonBPF is under active development. We are constantly adding support for more helpers, kfuncs, and map types. Check back for updates!
```
For comprehensive documentation on BPF helpers, see the [eBPF Helper Functions documentation on ebpf.io](https://ebpf.io/what-is-ebpf/#helper-calls).
## BPF Helper Functions
BPF helper functions are kernel-provided functions that BPF programs can call to interact with the system. PythonBPF exposes these through the `pythonbpf.helper` module.
```python
from pythonbpf.helper import pid, ktime, comm
```
### Process and Task Information
#### pid()
Get the current process ID.
> **Linux Kernel Helper:** `bpf_get_current_pid_tgid()`
```python
from pythonbpf.helper import pid
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def trace_open(ctx: c_void_p) -> c_int64:
process_id = pid()
print(f"Process {process_id} opened a file")
return 0
```
**Returns:** `c_int32` - The process ID of the current task
#### comm()
Get the current process command name.
> **Linux Kernel Helper:** `bpf_get_current_comm()`
**Parameters:**
* `buf` - Buffer to fill with the process command name
**Returns:** `c_int64` - 0 on success, negative on error
#### uid()
Get the current user ID.
> **Linux Kernel Helper:** `bpf_get_current_uid_gid()`
```python
from pythonbpf.helper import uid
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def trace_open(ctx: c_void_p) -> c_int64:
user_id = uid()
if user_id == 0:
print("Root user opened a file")
return 0
```
**Returns:** `c_int32` - The user ID of the current task
### Time and Timing
#### ktime()
Get the current kernel time in nanoseconds since system boot.
> **Linux Kernel Helper:** `bpf_ktime_get_ns()`
```python
from pythonbpf.helper import ktime
@bpf
@section("tracepoint/syscalls/sys_enter_read")
def measure_latency(ctx: c_void_p) -> c_int64:
start_time = ktime()
# Store for later comparison
return 0
```
**Returns:** `c_int64` - Current time in nanoseconds
**Use cases:**
* Measuring latency
* Timestamping events
* Rate limiting
* Timeout detection
### CPU Information
#### smp_processor_id()
Get the ID of the CPU on which the BPF program is running.
> **Linux Kernel Helper:** `bpf_get_smp_processor_id()`
```python
from pythonbpf.helper import smp_processor_id
@bpf
@section("tracepoint/sched/sched_switch")
def track_cpu(ctx: c_void_p) -> c_int64:
cpu = smp_processor_id()
print(f"Running on CPU {cpu}")
return 0
```
**Returns:** `c_int32` - The current CPU ID
**Use cases:**
* Per-CPU statistics
* Load balancing analysis
* CPU affinity tracking
### Memory Operations
#### probe_read()
Safely read data from kernel memory.
> **Linux Kernel Helper:** `bpf_probe_read()`
```python
from pythonbpf.helper import probe_read
@bpf
def read_kernel_data(ctx: c_void_p) -> c_int64:
dst = 0
size = 8
src = ctx # kernel address
result = probe_read(dst, size, src)
if result == 0:
print(f"Read value: {dst}")
return 0
```
**Parameters:**
* `dst` - Destination buffer
* `size` - Number of bytes to read
* `src` - Source kernel address
**Returns:** `c_int64` - 0 on success, negative on error
**Safety:** This function performs bounds checking and prevents invalid memory access.
#### probe_read_str()
Safely read a null-terminated string from kernel memory.
> **Linux Kernel Helper:** `bpf_probe_read_str()`
**Parameters:**
* `dst` - Destination buffer (string)
* `src` - Source kernel address
**Returns:** `c_int64` - Length of string on success, negative on error
### Random Numbers
#### random()
Generate a pseudo-random 32-bit number.
> **Linux Kernel Helper:** `bpf_get_prandom_u32()`
```python
from pythonbpf.helper import random
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def sample_events(ctx: c_void_p) -> c_int64:
# Sample 1% of events
if (random() % 100) == 0:
print("Sampled event")
return 0
```
**Returns:** `c_int32` - A pseudo-random number
### Network Helpers
#### skb_store_bytes()
Store bytes into a socket buffer (for network programs).
> **Linux Kernel Helper:** `bpf_skb_store_bytes()`
```python
from pythonbpf.helper import skb_store_bytes
@bpf
@section("classifier")
def modify_packet(ctx: c_void_p) -> c_int32:
offset = 14 # Skip Ethernet header
data = b"\x00\x01\x02\x03"
size = len(data)
result = skb_store_bytes(offset, data, size)
return 0
```
**Parameters:**
* `offset` - Offset in the socket buffer
* `from_buf` - Data to write
* `size` - Number of bytes to write
* `flags` - Optional flags
**Returns:** `c_int64` - 0 on success, negative on error
## Userspace Utilities
PythonBPF provides utilities for working with BPF programs from Python userspace code.
### trace_pipe()
Read and display output from the kernel trace pipe.
```python
from pythonbpf import trace_pipe
# After loading and attaching BPF programs
trace_pipe()
```
**Description:**
The `trace_pipe()` function reads from `/sys/kernel/tracing/trace_pipe` and displays BPF program output to stdout. This is the output from `print()` statements in BPF programs.
**Usage:**
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def trace_exec(ctx: c_void_p) -> c_int64:
print("Process started") # This goes to trace_pipe
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load_and_attach()
trace_pipe() # Display BPF output
```
**Behavior:**
* Blocks until Ctrl+C is pressed
* Displays output in real-time
* Shows task name, PID, CPU, timestamp, and message
* Automatically handles trace pipe access errors
**Requirements:**
* Root or sudo access
* Accessible `/sys/kernel/tracing/trace_pipe`
### trace_fields()
Parse one line from the trace pipe into structured fields.
```python
from pythonbpf import trace_fields
# Read and parse trace output
task, pid, cpu, flags, ts, msg = trace_fields()
print(f"Task: {task}, PID: {pid}, CPU: {cpu}, Time: {ts}, Message: {msg}")
```
**Returns:** Tuple of `(task, pid, cpu, flags, timestamp, message)`
* `task` - String: Task/process name (up to 16 chars)
* `pid` - Integer: Process ID
* `cpu` - Integer: CPU number
* `flags` - Bytes: Trace flags
* `timestamp` - Float: Timestamp in seconds
* `message` - String: The actual trace message
**Description:**
The `trace_fields()` function reads one line from the trace pipe and parses it into individual fields. This is useful when you need programmatic access to trace data rather than just displaying it.
**Usage:**
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_fields
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def trace_exec(ctx: c_void_p) -> c_int64:
print(f"PID:{pid()}")
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load_and_attach()
# Process trace events
try:
while True:
task, pid, cpu, flags, ts, msg = trace_fields()
print(f"[{ts:.6f}] {task}({pid}) on CPU{cpu}: {msg}")
except KeyboardInterrupt:
print("Stopped")
```
**Error Handling:**
* Raises `ValueError` if line cannot be parsed
* Skips lines about lost events
* Blocks waiting for next line
## Helper Function Examples
### Example 1: Latency Measurement
```python
from pythonbpf import bpf, map, section, bpfglobal, BPF, trace_pipe
from pythonbpf.maps import HashMap
from pythonbpf.helper import pid, ktime
from ctypes import c_void_p, c_int64, c_uint32, c_uint64
@bpf
@map
def start_times() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=4096)
@bpf
@section("tracepoint/syscalls/sys_enter_read")
def read_start(ctx: c_void_p) -> c_int64:
process_id = pid()
start = ktime()
start_times.update(process_id, start)
return 0
@bpf
@section("tracepoint/syscalls/sys_exit_read")
def read_end(ctx: c_void_p) -> c_int64:
process_id = pid()
start = start_times.lookup(process_id)
if start:
latency = ktime() - start
print(f"Read latency: {latency} ns")
start_times.delete(process_id)
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load_and_attach()
trace_pipe()
```
### Example 2: Process Tracking
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from pythonbpf.helper import pid, uid
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def track_exec(ctx: c_void_p) -> c_int64:
process_id = pid()
user_id = uid()
print(f"User {user_id} started process (PID: {process_id})")
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load_and_attach()
trace_pipe()
```
### Example 3: CPU Load Monitoring
```python
from pythonbpf import bpf, map, section, bpfglobal, BPF
from pythonbpf.maps import HashMap
from pythonbpf.helper import smp_processor_id
from ctypes import c_void_p, c_int64, c_uint32, c_uint64
@bpf
@map
def cpu_counts() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=256)
@bpf
@section("tracepoint/sched/sched_switch")
def count_switches(ctx: c_void_p) -> c_int64:
cpu = smp_processor_id()
count = cpu_counts.lookup(cpu)
if count:
cpu_counts.update(cpu, count + 1)
else:
cpu_counts.update(cpu, 1)
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load_and_attach()
import time
time.sleep(5)
# Read results
from pylibbpf import BpfMap
map_obj = BpfMap(b, cpu_counts)
for cpu, count in map_obj.items():
print(f"CPU {cpu}: {count} context switches")
```
### Example 4: Event Sampling
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from pythonbpf.helper import random, pid
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def sample_opens(ctx: c_void_p) -> c_int64:
# Sample 5% of events
if (random() % 100) < 5:
process_id = pid()
print(f"Sampled: PID {process_id} opening file")
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load_and_attach()
trace_pipe()
```
## Troubleshooting
### Helper Not Available
If a helper function doesn't work:
* Check your kernel version (some helpers are newer)
* Ensure your LICENSE is GPL-compatible
### Trace Pipe Access Denied
If `trace_pipe()` fails:
* Run with sudo/root
* Check `/sys/kernel/tracing/` is accessible
* Verify tracing is enabled in kernel config
## Examples
Check out these examples in the `BCC-Examples/` directory that demonstrate helper functions:
* [hello_world.py](https://github.com/pythonbpf/Python-BPF/blob/main/BCC-Examples/hello_world.py) - Basic tracing with `print()`
* [sync_timing.py](https://github.com/pythonbpf/Python-BPF/blob/main/BCC-Examples/sync_timing.py) - Using `ktime()` for timing measurements
* [hello_perf_output.py](https://github.com/pythonbpf/Python-BPF/blob/main/BCC-Examples/hello_perf_output.py) - Using `pid()`, `ktime()`, and `comm()` with perf events
* [vfsreadlat.py](https://github.com/pythonbpf/Python-BPF/blob/main/BCC-Examples/vfsreadlat.py) - Latency measurement with `ktime()` in kprobes
## Next Steps
* Explore {doc}`maps` for data storage with helpers
* Learn about {doc}`compilation` to understand helper implementation
* See {doc}`decorators` for marking BPF functions

View File

@ -1,87 +0,0 @@
# User Guide
This user guide provides comprehensive documentation for all PythonBPF features. Whether you're building simple tracing tools or complex performance monitoring systems, this guide will help you master PythonBPF.
## Overview
PythonBPF transforms Python code into eBPF bytecode that runs in the Linux kernel. It provides a Pythonic interface to eBPF features through decorators, type annotations, and familiar programming patterns.
## Core Concepts
### Decorators
PythonBPF uses decorators to mark code for BPF compilation:
* `@bpf` - Mark functions and classes for BPF compilation
* `@map` - Define BPF maps for data storage
* `@struct` - Define custom data structures
* `@section(name)` - Specify attachment points
* `@bpfglobal` - Define global variables
### Compilation Pipeline
Your Python code goes through several stages:
1. **IR Generation** - The Python AST is transformed into LLVM IR using llvmlite
2. **BPF Compilation** - LLVM IR is compiled to BPF bytecode using `llc`
3. **Loading** - The BPF object is loaded into the kernel using libbpf
4. **Attachment** - Programs are attached to kernel hooks (tracepoints, kprobes, etc.)
## Code Organization
When writing BPF programs with PythonBPF, we recommend:
1. **Use type hints** - Required for proper code generation
2. **Test incrementally** - Verify each component works before adding complexity
## Type System
PythonBPF uses Python's `ctypes` module for type definitions:
* `c_int8`, `c_int16`, `c_int32`, `c_int64` - Signed integers
* `c_uint8`, `c_uint16`, `c_uint32`, `c_uint64` - Unsigned integers
* `c_char`, `c_bool` - Characters and booleans
* `c_void_p` - Void pointers
* `str(N)` - Fixed-length strings (e.g., `str(16)` for 16-byte string)
## Example Structure
A typical PythonBPF program follows this structure:
```python
from pythonbpf import bpf, map, section, bpfglobal, BPF, compile
from pythonbpf.maps import HashMap
from ctypes import c_void_p, c_int64, c_uint32
# Define maps
@bpf
@map
def my_map() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=1024)
# Define BPF function
@bpf
@section("tracepoint/...")
def my_function(ctx: c_void_p) -> c_int64:
# BPF logic here
return 0
# License (required)
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile, load, and run
if __name__ == "__main__":
b = BPF()
b.load_and_attach()
# Use the program...
# Or, compile to an object file
compile()
```
## Next Steps
Start with {doc}`decorators` to learn about all available decorators, then explore the other sections to master specific features.

View File

@ -1,476 +0,0 @@
# BPF Maps
Maps are BPF data structures that provide storage and communication mechanisms. They allow BPF programs to:
* Store state between invocations
* Share data between multiple BPF programs
* Communicate with userspace applications
```{note}
**Work in Progress:** PythonBPF is under active development. We are constantly adding support for more map types, helpers, and kfuncs. Check back for updates!
```
For comprehensive documentation on BPF maps, see the [eBPF Maps documentation on ebpf.io](https://ebpf.io/what-is-ebpf/#maps).
## Map Types
PythonBPF supports several map types, each optimized for different use cases.
### HashMap
Hash maps provide efficient key-value storage with O(1) lookup time.
> **Linux Kernel Map Type:** `BPF_MAP_TYPE_HASH`
#### Definition
```python
from pythonbpf import bpf, map
from pythonbpf.maps import HashMap
from ctypes import c_uint32, c_uint64
@bpf
@map
def my_map() -> HashMap:
return HashMap(
key=c_uint32,
value=c_uint64,
max_entries=1024
)
```
#### Parameters
* `key` - The type of the key (must be a ctypes type or struct)
* `value` - The type of the value (must be a ctypes type or struct)
* `max_entries` - Maximum number of entries the map can hold
#### Operations
##### lookup(key)
Look up a value by key. Returns the value if found, `None` otherwise.
```python
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def trace_open(ctx: c_void_p) -> c_int64:
value = my_map.lookup(1)
if value:
print(f"Found value: {value}")
return 0
```
##### update(key, value, flags=None)
Update or insert a key-value pair.
```python
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def track_opens(ctx: c_void_p) -> c_int64:
key = pid()
count = my_map.lookup(key)
if count:
my_map.update(key, count + 1)
else:
my_map.update(key, 1)
return 0
```
##### delete(key)
Remove an entry from the map.
```python
@bpf
def cleanup(ctx: c_void_p) -> c_int64:
my_map.delete(1)
return 0
```
#### Use Cases
* Counting events per process/CPU
* Storing timestamps for latency calculations
* Caching lookup results
* Implementing rate limiters
#### Example: Process Counter
```python
from pythonbpf import bpf, map, section, bpfglobal, BPF
from pythonbpf.maps import HashMap
from pythonbpf.helper import pid
from ctypes import c_void_p, c_int64, c_uint32, c_uint64
@bpf
@map
def process_count() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=4096)
@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def count_processes(ctx: c_void_p) -> c_int64:
process_id = pid()
count = process_count.lookup(process_id)
if count:
new_count = count + 1
process_count.update(process_id, new_count)
else:
process_count.update(process_id, 1)
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
if __name__ == "__main__":
b = BPF()
b.load_and_attach()
# Access map from userspace
from pylibbpf import BpfMap
map_obj = BpfMap(b, process_count)
# Read values...
```
### PerfEventArray
Perf event arrays are used to send data from BPF programs to userspace with high throughput.
> **Linux Kernel Map Type:** `BPF_MAP_TYPE_PERF_EVENT_ARRAY`
#### Definition
```python
from pythonbpf.maps import PerfEventArray
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(
key_size=c_uint32,
value_size=c_uint32
)
```
#### Parameters
* `key_size` - Type for the key (typically `c_uint32`)
* `value_size` - Type for the value (typically `c_uint32`)
#### Operations
##### output(data)
Send data to userspace. The data can be a struct or basic type.
```python
@bpf
@struct
class Event:
pid: c_uint32
timestamp: c_uint64
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_uint32, value_size=c_uint32)
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def send_event(ctx: c_void_p) -> c_int64:
event = Event()
event.pid = pid()
event.timestamp = ktime()
events.output(event)
return 0
```
#### Use Cases
* Sending detailed event data to userspace
* Real-time monitoring and alerting
* Collecting samples for analysis
* High-throughput data collection
#### Example: Event Logging
```python
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.maps import PerfEventArray
from pythonbpf.helper import pid, ktime, comm
from ctypes import c_void_p, c_int64, c_uint32, c_uint64
@bpf
@struct
class ProcessEvent:
timestamp: c_uint64
pid: c_uint32
comm: str(16)
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_uint32, value_size=c_uint32)
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def log_exec(ctx: c_void_p) -> c_int64:
event = ProcessEvent()
event.timestamp = ktime()
event.pid = pid()
comm(event.comm) # Fills event.comm with process name
events.output(event)
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
```
### RingBuffer
Ring buffers provide efficient, ordered event delivery with lower overhead than perf event arrays.
> **Linux Kernel Map Type:** `BPF_MAP_TYPE_RINGBUF`
#### Definition
```python
from pythonbpf.maps import RingBuffer
@bpf
@map
def events() -> RingBuffer:
return RingBuffer(max_entries=4096)
```
#### Parameters
* `max_entries` - Maximum size of the ring buffer in bytes (must be power of 2)
#### Operations
##### output(data, flags=0)
Send data to the ring buffer.
```python
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def log_event(ctx: c_void_p) -> c_int64:
event = Event()
event.pid = pid()
events.output(event)
return 0
```
##### reserve(size)
Reserve space in the ring buffer. Returns a pointer to the reserved space or 0 if no space available.
```python
@bpf
def reserve_space(ctx: c_void_p) -> c_int64:
ptr = events.reserve(64) # Reserve 64 bytes
if ptr:
# Use the reserved space
events.submit(ptr)
return 0
```
##### submit(data, flags=0)
Submit previously reserved space.
##### discard(data, flags=0)
Discard previously reserved space without submitting.
#### Use Cases
* Modern event streaming (preferred over PerfEventArray)
* Lower overhead event delivery
* Ordered event processing
* Kernel 5.8+ systems
#### Advantages over PerfEventArray
* Lower memory overhead
* Better performance
* Simpler API
* Ordered delivery guarantees
### BPFMapType Enum
PythonBPF supports various BPF map types through the `BPFMapType` enum:
```python
from pythonbpf.maps import BPFMapType
# Common map types
BPFMapType.BPF_MAP_TYPE_HASH # Hash map
BPFMapType.BPF_MAP_TYPE_ARRAY # Array map
BPFMapType.BPF_MAP_TYPE_PERF_EVENT_ARRAY # Perf event array
BPFMapType.BPF_MAP_TYPE_RINGBUF # Ring buffer
BPFMapType.BPF_MAP_TYPE_STACK_TRACE # Stack trace storage
BPFMapType.BPF_MAP_TYPE_LRU_HASH # LRU hash map
```
## Using Maps with Structs
Maps can store complex data types using structs as values:
```python
from pythonbpf import bpf, map, struct, section
from pythonbpf.maps import HashMap
from ctypes import c_uint32, c_uint64
@bpf
@struct
class Stats:
count: c_uint64
total_time: c_uint64
max_time: c_uint64
@bpf
@map
def process_stats() -> HashMap:
return HashMap(
key=c_uint32, # PID as key
value=Stats, # Struct as value
max_entries=1024
)
@bpf
@section("tracepoint/syscalls/sys_enter_read")
def track_stats(ctx: c_void_p) -> c_int64:
process_id = pid()
stats = process_stats.lookup(process_id)
if stats:
stats.count = stats.count + 1
process_stats.update(process_id, stats)
else:
new_stats = Stats()
new_stats.count = 1
new_stats.total_time = 0
new_stats.max_time = 0
process_stats.update(process_id, new_stats)
return 0
```
## Accessing Maps from Userspace
After loading a BPF program, you can access maps from Python using `pylibbpf`:
```python
from pythonbpf import BPF
from pylibbpf import BpfMap
# Load BPF program
b = BPF()
b.load_and_attach()
# Get map reference
map_obj = BpfMap(b, my_map)
# Read all key-value pairs
for key, value in map_obj.items():
print(f"Key: {key}, Value: {value}")
# Get all keys
keys = list(map_obj.keys())
# Get all values
values = list(map_obj.values())
# Lookup specific key
value = map_obj[key]
# Update from userspace
map_obj[key] = new_value
# Delete from userspace
del map_obj[key]
```
## Common Patterns
### Counter Pattern
```python
count = my_map.lookup(key)
if count:
my_map.update(key, count + 1)
else:
my_map.update(key, 1)
```
### Latency Tracking
```python
# Store start time
start = ktime()
start_map.update(key, start)
# Later: calculate latency
start_time = start_map.lookup(key)
if start_time:
latency = ktime() - start_time
latency_map.update(key, latency)
start_map.delete(key)
```
### Event Sampling
```python
# Only process every Nth event
count = counter.lookup(key)
if count and (count % 100) == 0:
events.output(data)
counter.update(key, count + 1 if count else 1)
```
## Troubleshooting
### Map Not Found
If you get "map not found" errors:
* Ensure the map is defined with `@bpf` and `@map`
* Check that the map name matches exactly
* Verify the BPF program loaded successfully
### Map Full
If updates fail due to map being full:
* Increase `max_entries`
* Use LRU maps for automatic eviction
* Add cleanup logic to delete old entries
### Type Errors
If you get type-related errors:
* Verify key and value types match the definition
* Check that structs are properly defined
## Examples
Check out these examples in the `BCC-Examples/` directory that demonstrate map usage:
* [sync_timing.py](https://github.com/pythonbpf/Python-BPF/blob/main/BCC-Examples/sync_timing.py) - HashMap for storing timestamps
* [sync_count.py](https://github.com/pythonbpf/Python-BPF/blob/main/BCC-Examples/sync_count.py) - HashMap for counting events
* [hello_perf_output.py](https://github.com/pythonbpf/Python-BPF/blob/main/BCC-Examples/hello_perf_output.py) - PerfEventArray for sending structs to userspace
* [sync_perf_output.py](https://github.com/pythonbpf/Python-BPF/blob/main/BCC-Examples/sync_perf_output.py) - PerfEventArray with timing data
* [disksnoop.py](https://github.com/pythonbpf/Python-BPF/blob/main/BCC-Examples/disksnoop.py) - HashMap for tracking disk I/O
## Next Steps
* Learn about {doc}`structs` for defining custom value types
* Explore {doc}`helpers` for BPF helper functions
* See {doc}`compilation` to understand how maps are compiled

View File

@ -1,413 +0,0 @@
# BPF Structs
Structs allow you to define custom data types for use in BPF programs. They provide a way to group related fields together and can be used as map values, event payloads, or local variables.
## Defining Structs
Use the `@bpf` and `@struct` decorators to define a BPF struct:
```python
from pythonbpf import bpf, struct
from ctypes import c_uint64, c_uint32
@bpf
@struct
class Event:
timestamp: c_uint64
pid: c_uint32
cpu: c_uint32
```
## Field Types
Structs support various field types from Python's `ctypes` module.
### Integer Types
```python
from ctypes import (
c_int8, c_int16, c_int32, c_int64,
c_uint8, c_uint16, c_uint32, c_uint64
)
@bpf
@struct
class Numbers:
small_int: c_int8 # -128 to 127
short_int: c_int16 # -32768 to 32767
int_val: c_int32 # -2^31 to 2^31-1
long_int: c_int64 # -2^63 to 2^63-1
byte: c_uint8 # 0 to 255
word: c_uint16 # 0 to 65535
dword: c_uint32 # 0 to 2^32-1
qword: c_uint64 # 0 to 2^64-1
```
### String Types
Fixed-length strings are defined using `str(N)` where N is the size:
```python
@bpf
@struct
class ProcessInfo:
name: str(16) # 16-byte string
path: str(256) # 256-byte string
```
```{note}
Strings in BPF are fixed-length and null-terminated. The size includes the null terminator.
```
### Pointer Types
```python
from ctypes import c_void_p, c_char_p
@bpf
@struct
class Pointers:
ptr: c_void_p # Generic pointer
str_ptr: c_char_p # Character pointer
```
### Nested Structs
Structs can contain other structs as fields:
```python
@bpf
@struct
class Address:
street: str(64)
city: str(32)
zip_code: c_uint32
@bpf
@struct
class Person:
name: str(32)
age: c_uint32
address: Address # Nested struct
```
## Using Structs
### As Local Variables
Create and use struct instances within BPF functions:
```python
from pythonbpf import bpf, struct, section
from pythonbpf.helper import pid, ktime, comm
from ctypes import c_void_p, c_int64, c_uint64, c_uint32
@bpf
@struct
class Event:
timestamp: c_uint64
pid: c_uint32
comm: str(16)
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def capture_event(ctx: c_void_p) -> c_int64:
# Create an instance
event = Event()
# Set fields
event.timestamp = ktime()
event.pid = pid()
comm(event.comm) # Fills event.comm with process name
# Use the struct
print(f"Process with PID {event.pid}")
return 0
```
### As Map Keys and Values
Use structs as keys and values in maps for complex state storage:
```python
from pythonbpf import bpf, struct, map, section
from pythonbpf.maps import HashMap
from ctypes import c_uint32, c_uint64
@bpf
@struct
class ProcessStats:
syscall_count: c_uint64
total_time: c_uint64
max_latency: c_uint64
@bpf
@map
def stats() -> HashMap:
return HashMap(
key=c_uint32,
value=ProcessStats,
max_entries=1024
)
@bpf
@section("tracepoint/syscalls/sys_enter_read")
def track_syscalls(ctx: c_void_p) -> c_int64:
process_id = pid()
# Lookup existing stats
s = stats.lookup(process_id)
if s:
# Update existing stats
s.syscall_count = s.syscall_count + 1
stats.update(process_id, s)
else:
# Create new stats
new_stats = ProcessStats()
new_stats.syscall_count = 1
new_stats.total_time = 0
new_stats.max_latency = 0
stats.update(process_id, new_stats)
return 0
```
### With Perf Events
Send struct data to userspace using PerfEventArray:
```python
from pythonbpf import bpf, struct, map, section
from pythonbpf.maps import PerfEventArray
from pythonbpf.helper import pid, ktime, comm
from ctypes import c_void_p, c_int64, c_uint32, c_uint64
@bpf
@struct
class ProcessEvent:
timestamp: c_uint64
pid: c_uint32
ppid: c_uint32
comm: str(16)
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_uint32, value_size=c_uint32)
@bpf
@section("tracepoint/sched/sched_process_fork")
def trace_fork(ctx: c_void_p) -> c_int64:
event = ProcessEvent()
event.timestamp = ktime()
event.pid = pid()
comm(event.comm) # Fills event.comm with process name
# Send to userspace
events.output(event)
return 0
```
### With Ring Buffers
```python
from pythonbpf import bpf, struct, map, section
from pythonbpf.maps import RingBuffer
@bpf
@struct
class FileEvent:
timestamp: c_uint64
pid: c_uint32
filename: str(256)
@bpf
@map
def events() -> RingBuffer:
return RingBuffer(max_entries=4096)
@bpf
@section("tracepoint/syscalls/sys_enter_openat")
def trace_open(ctx: c_void_p) -> c_int64:
event = FileEvent()
event.timestamp = ktime()
event.pid = pid()
events.output(event)
return 0
```
## Field Access and Modification
### Reading Fields
Access struct fields using dot notation:
```python
event = Event()
ts = event.timestamp
process_id = event.pid
```
### Writing Fields
Assign values to fields:
```python
event = Event()
event.timestamp = ktime()
event.pid = pid()
comm(event.comm)
```
## StructType Class
PythonBPF provides a `StructType` class for working with struct metadata:
```python
from pythonbpf.structs import StructType
# Define a struct
@bpf
@struct
class MyStruct:
field1: c_uint64
field2: c_uint32
# Access struct information (from userspace)
# This is typically used internally by the compiler
```
## Complex Examples
### Network Packet Event
```python
from pythonbpf import bpf, struct, map, section
from pythonbpf.maps import RingBuffer
from pythonbpf.helper import ktime, XDP_PASS
from ctypes import c_void_p, c_int64, c_uint8, c_uint16, c_uint32, c_uint64
@bpf
@struct
class PacketEvent:
timestamp: c_uint64
src_ip: c_uint32
dst_ip: c_uint32
src_port: c_uint16
dst_port: c_uint16
protocol: c_uint8
length: c_uint16
@bpf
@map
def packets() -> RingBuffer:
return RingBuffer(max_entries=8192)
@bpf
@section("xdp")
def capture_packets(ctx: c_void_p) -> c_int64:
pkt = PacketEvent()
pkt.timestamp = ktime()
# Parse packet data from ctx...
packets.output(pkt)
return XDP_PASS
```
### Process Lifecycle Tracking
```python
@bpf
@struct
class ProcessLifecycle:
pid: c_uint32
ppid: c_uint32
start_time: c_uint64
exit_time: c_uint64
exit_code: c_int32
comm: str(16)
@bpf
@map
def process_info() -> HashMap:
return HashMap(
key=c_uint32,
value=ProcessLifecycle,
max_entries=4096
)
@bpf
@section("tracepoint/sched/sched_process_fork")
def track_fork(ctx: c_void_p) -> c_int64:
process_id = pid()
info = ProcessLifecycle()
info.pid = process_id
info.start_time = ktime()
process_info.update(process_id, info)
return 0
@bpf
@section("tracepoint/sched/sched_process_exit")
def track_exit(ctx: c_void_p) -> c_int64:
process_id = pid()
info = process_info.lookup(process_id)
if info:
info.exit_time = ktime()
process_info.update(process_id, info)
return 0
```
## Troubleshooting
### Struct Size Issues
If you encounter size-related errors:
* Check for excessive padding
* Verify field types are correct
* Consider reordering fields
### Initialization Problems
If fields aren't initialized correctly:
* Always initialize all fields explicitly
* Set default values where appropriate
* Use helper functions for dynamic values
### Type Mismatch Errors
If you get type errors:
* Ensure field types match assignments
* Check that imported types are from `ctypes`
* Verify nested struct definitions
## Reading Struct Data in Userspace
After capturing struct data, read it in Python:
```python
from pylibbpf import BpfMap
# Read from map
map_obj = BpfMap(b, stats)
for key, value_bytes in map_obj.items():
value = Event.from_buffer_copy(value_bytes)
print(f"PID: {value.pid}, Comm: {value.comm.decode()}")
```
## Next Steps
* Learn about {doc}`maps` for storing struct data
* Explore {doc}`helpers` for populating struct fields
* See {doc}`compilation` to understand how structs are compiled

View File

@ -1,22 +0,0 @@
"""
Process Anomaly Detection - Constants and Utilities
"""
import logging
logger = logging.getLogger(__name__)
MAX_SYSCALLS = 548
def comm_for_pid(pid: int) -> bytes | None:
"""Get process name from /proc."""
try:
with open(f"/proc/{pid}/comm", "rb") as f:
return f.read().strip()
except FileNotFoundError:
logger.warning(f"Process with PID {pid} not found.")
except PermissionError:
logger.warning(f"Permission denied when accessing /proc/{pid}/comm.")
except Exception as e:
logger.warning(f"Error reading /proc/{pid}/comm: {e}")
return None

View File

@ -1,173 +0,0 @@
"""
Autoencoder for Process Behavior Anomaly Detection
Uses Keras/TensorFlow to train an autoencoder on syscall patterns.
Anomalies are detected when reconstruction error exceeds threshold.
"""
import logging
import os
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from tensorflow import keras
from lib import MAX_SYSCALLS
logger = logging.getLogger(__name__)
def create_autoencoder(n_inputs: int = MAX_SYSCALLS) -> keras.Model:
"""
Create the autoencoder architecture.
Architecture: input → encoder → bottleneck → decoder → output
"""
inp = keras.Input(shape=(n_inputs,))
# Encoder
encoder = keras.layers.Dense(n_inputs)(inp)
encoder = keras.layers.ReLU()(encoder)
# Bottleneck (compressed representation)
bottleneck = keras.layers.Dense(n_inputs // 2)(encoder)
# Decoder
decoder = keras.layers.Dense(n_inputs)(bottleneck)
decoder = keras.layers.ReLU()(decoder)
output = keras.layers.Dense(n_inputs, activation="linear")(decoder)
model = keras.Model(inp, output)
model.compile(optimizer="adam", loss="mse")
return model
class AutoEncoder:
"""
Autoencoder for syscall pattern anomaly detection.
Usage:
# Training
ae = AutoEncoder('model.keras')
model, threshold = ae.train('data.csv', epochs=200)
# Inference
ae = AutoEncoder('model.keras', load=True)
_, errors, total_error = ae.predict([features])
"""
def __init__(self, filename: str, load: bool = False):
self.filename = filename
self.model = None
if load:
self._load_model()
def _load_model(self) -> None:
"""Load a trained model from disk."""
if not os.path.exists(self.filename):
raise FileNotFoundError(f"Model file not found: {self.filename}")
logger.info(f"Loading model from {self.filename}")
self.model = keras.models.load_model(self.filename)
def train(
self,
datafile: str,
epochs: int,
batch_size: int,
test_size: float = 0.1,
) -> tuple[keras.Model, float]:
"""
Train the autoencoder on collected data.
Args:
datafile: Path to CSV file with training data
epochs: Number of training epochs
batch_size: Training batch size
test_size: Fraction of data to use for validation
Returns:
Tuple of (trained model, error threshold)
"""
if not os.path.exists(datafile):
raise FileNotFoundError(f"Data file not found: {datafile}")
logger.info(f"Loading training data from {datafile}")
# Load and prepare data
df = pd.read_csv(datafile)
features = df.drop(["sample_time"], axis=1).values
logger.info(f"Loaded {len(features)} samples with {features.shape[1]} features")
# Split train/test
train_data, test_data = train_test_split(
features,
test_size=test_size,
random_state=42,
)
logger.info(f"Training set: {len(train_data)} samples")
logger.info(f"Test set: {len(test_data)} samples")
# Create and train model
self.model = create_autoencoder()
if self.model is None:
raise RuntimeError("Failed to create the autoencoder model.")
logger.info("Training autoencoder...")
self.model.fit(
train_data,
train_data,
validation_data=(test_data, test_data),
epochs=epochs,
batch_size=batch_size,
verbose=1,
)
# Save model (use .keras format for Keras 3.x compatibility)
self.model.save(self.filename)
logger.info(f"Model saved to {self.filename}")
# Calculate error threshold from test data
threshold = self._calculate_threshold(test_data)
return self.model, threshold
def _calculate_threshold(self, test_data: np.ndarray) -> float:
"""Calculate error threshold from test data."""
logger.info(f"Calculating error threshold from {len(test_data)} test samples")
if self.model is None:
raise RuntimeError("Model not loaded. Use load=True or train first.")
predictions = self.model.predict(test_data, verbose=0)
errors = np.abs(test_data - predictions).sum(axis=1)
return float(errors.max())
def predict(self, X: list | np.ndarray) -> tuple[np.ndarray, np.ndarray, float]:
"""
Run prediction and return reconstruction error.
Args:
X: Input data (list of feature vectors)
Returns:
Tuple of (reconstructed, per_feature_errors, total_error)
"""
if self.model is None:
raise RuntimeError("Model not loaded. Use load=True or train first.")
X = np.asarray(X, dtype=np.float32)
y = self.model.predict(X, verbose=0)
# Per-feature reconstruction error
errors = np.abs(X[0] - y[0])
total_error = float(errors.sum())
return y, errors, total_error

View File

@ -1,448 +0,0 @@
# Copyright 2017 Sasha Goldshtein
# Copyright 2018 Red Hat, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
syscall.py contains functions useful for mapping between syscall names and numbers
"""
# Syscall table for Linux x86_64, not very recent. Automatically generated from
# https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/syscall_64.tbl?h=linux-6.17.y
# using the following command:
#
# cat arch/x86/entry/syscalls/syscall_64.tbl \
# | awk 'BEGIN { print "syscalls = {" }
# /^[0-9]/ { print " "$1": b\""$3"\"," }
# END { print "}" }'
SYSCALLS = {
0: b"read",
1: b"write",
2: b"open",
3: b"close",
4: b"stat",
5: b"fstat",
6: b"lstat",
7: b"poll",
8: b"lseek",
9: b"mmap",
10: b"mprotect",
11: b"munmap",
12: b"brk",
13: b"rt_sigaction",
14: b"rt_sigprocmask",
15: b"rt_sigreturn",
16: b"ioctl",
17: b"pread64",
18: b"pwrite64",
19: b"readv",
20: b"writev",
21: b"access",
22: b"pipe",
23: b"select",
24: b"sched_yield",
25: b"mremap",
26: b"msync",
27: b"mincore",
28: b"madvise",
29: b"shmget",
30: b"shmat",
31: b"shmctl",
32: b"dup",
33: b"dup2",
34: b"pause",
35: b"nanosleep",
36: b"getitimer",
37: b"alarm",
38: b"setitimer",
39: b"getpid",
40: b"sendfile",
41: b"socket",
42: b"connect",
43: b"accept",
44: b"sendto",
45: b"recvfrom",
46: b"sendmsg",
47: b"recvmsg",
48: b"shutdown",
49: b"bind",
50: b"listen",
51: b"getsockname",
52: b"getpeername",
53: b"socketpair",
54: b"setsockopt",
55: b"getsockopt",
56: b"clone",
57: b"fork",
58: b"vfork",
59: b"execve",
60: b"exit",
61: b"wait4",
62: b"kill",
63: b"uname",
64: b"semget",
65: b"semop",
66: b"semctl",
67: b"shmdt",
68: b"msgget",
69: b"msgsnd",
70: b"msgrcv",
71: b"msgctl",
72: b"fcntl",
73: b"flock",
74: b"fsync",
75: b"fdatasync",
76: b"truncate",
77: b"ftruncate",
78: b"getdents",
79: b"getcwd",
80: b"chdir",
81: b"fchdir",
82: b"rename",
83: b"mkdir",
84: b"rmdir",
85: b"creat",
86: b"link",
87: b"unlink",
88: b"symlink",
89: b"readlink",
90: b"chmod",
91: b"fchmod",
92: b"chown",
93: b"fchown",
94: b"lchown",
95: b"umask",
96: b"gettimeofday",
97: b"getrlimit",
98: b"getrusage",
99: b"sysinfo",
100: b"times",
101: b"ptrace",
102: b"getuid",
103: b"syslog",
104: b"getgid",
105: b"setuid",
106: b"setgid",
107: b"geteuid",
108: b"getegid",
109: b"setpgid",
110: b"getppid",
111: b"getpgrp",
112: b"setsid",
113: b"setreuid",
114: b"setregid",
115: b"getgroups",
116: b"setgroups",
117: b"setresuid",
118: b"getresuid",
119: b"setresgid",
120: b"getresgid",
121: b"getpgid",
122: b"setfsuid",
123: b"setfsgid",
124: b"getsid",
125: b"capget",
126: b"capset",
127: b"rt_sigpending",
128: b"rt_sigtimedwait",
129: b"rt_sigqueueinfo",
130: b"rt_sigsuspend",
131: b"sigaltstack",
132: b"utime",
133: b"mknod",
134: b"uselib",
135: b"personality",
136: b"ustat",
137: b"statfs",
138: b"fstatfs",
139: b"sysfs",
140: b"getpriority",
141: b"setpriority",
142: b"sched_setparam",
143: b"sched_getparam",
144: b"sched_setscheduler",
145: b"sched_getscheduler",
146: b"sched_get_priority_max",
147: b"sched_get_priority_min",
148: b"sched_rr_get_interval",
149: b"mlock",
150: b"munlock",
151: b"mlockall",
152: b"munlockall",
153: b"vhangup",
154: b"modify_ldt",
155: b"pivot_root",
156: b"_sysctl",
157: b"prctl",
158: b"arch_prctl",
159: b"adjtimex",
160: b"setrlimit",
161: b"chroot",
162: b"sync",
163: b"acct",
164: b"settimeofday",
165: b"mount",
166: b"umount2",
167: b"swapon",
168: b"swapoff",
169: b"reboot",
170: b"sethostname",
171: b"setdomainname",
172: b"iopl",
173: b"ioperm",
174: b"create_module",
175: b"init_module",
176: b"delete_module",
177: b"get_kernel_syms",
178: b"query_module",
179: b"quotactl",
180: b"nfsservctl",
181: b"getpmsg",
182: b"putpmsg",
183: b"afs_syscall",
184: b"tuxcall",
185: b"security",
186: b"gettid",
187: b"readahead",
188: b"setxattr",
189: b"lsetxattr",
190: b"fsetxattr",
191: b"getxattr",
192: b"lgetxattr",
193: b"fgetxattr",
194: b"listxattr",
195: b"llistxattr",
196: b"flistxattr",
197: b"removexattr",
198: b"lremovexattr",
199: b"fremovexattr",
200: b"tkill",
201: b"time",
202: b"futex",
203: b"sched_setaffinity",
204: b"sched_getaffinity",
205: b"set_thread_area",
206: b"io_setup",
207: b"io_destroy",
208: b"io_getevents",
209: b"io_submit",
210: b"io_cancel",
211: b"get_thread_area",
212: b"lookup_dcookie",
213: b"epoll_create",
214: b"epoll_ctl_old",
215: b"epoll_wait_old",
216: b"remap_file_pages",
217: b"getdents64",
218: b"set_tid_address",
219: b"restart_syscall",
220: b"semtimedop",
221: b"fadvise64",
222: b"timer_create",
223: b"timer_settime",
224: b"timer_gettime",
225: b"timer_getoverrun",
226: b"timer_delete",
227: b"clock_settime",
228: b"clock_gettime",
229: b"clock_getres",
230: b"clock_nanosleep",
231: b"exit_group",
232: b"epoll_wait",
233: b"epoll_ctl",
234: b"tgkill",
235: b"utimes",
236: b"vserver",
237: b"mbind",
238: b"set_mempolicy",
239: b"get_mempolicy",
240: b"mq_open",
241: b"mq_unlink",
242: b"mq_timedsend",
243: b"mq_timedreceive",
244: b"mq_notify",
245: b"mq_getsetattr",
246: b"kexec_load",
247: b"waitid",
248: b"add_key",
249: b"request_key",
250: b"keyctl",
251: b"ioprio_set",
252: b"ioprio_get",
253: b"inotify_init",
254: b"inotify_add_watch",
255: b"inotify_rm_watch",
256: b"migrate_pages",
257: b"openat",
258: b"mkdirat",
259: b"mknodat",
260: b"fchownat",
261: b"futimesat",
262: b"newfstatat",
263: b"unlinkat",
264: b"renameat",
265: b"linkat",
266: b"symlinkat",
267: b"readlinkat",
268: b"fchmodat",
269: b"faccessat",
270: b"pselect6",
271: b"ppoll",
272: b"unshare",
273: b"set_robust_list",
274: b"get_robust_list",
275: b"splice",
276: b"tee",
277: b"sync_file_range",
278: b"vmsplice",
279: b"move_pages",
280: b"utimensat",
281: b"epoll_pwait",
282: b"signalfd",
283: b"timerfd_create",
284: b"eventfd",
285: b"fallocate",
286: b"timerfd_settime",
287: b"timerfd_gettime",
288: b"accept4",
289: b"signalfd4",
290: b"eventfd2",
291: b"epoll_create1",
292: b"dup3",
293: b"pipe2",
294: b"inotify_init1",
295: b"preadv",
296: b"pwritev",
297: b"rt_tgsigqueueinfo",
298: b"perf_event_open",
299: b"recvmmsg",
300: b"fanotify_init",
301: b"fanotify_mark",
302: b"prlimit64",
303: b"name_to_handle_at",
304: b"open_by_handle_at",
305: b"clock_adjtime",
306: b"syncfs",
307: b"sendmmsg",
308: b"setns",
309: b"getcpu",
310: b"process_vm_readv",
311: b"process_vm_writev",
312: b"kcmp",
313: b"finit_module",
314: b"sched_setattr",
315: b"sched_getattr",
316: b"renameat2",
317: b"seccomp",
318: b"getrandom",
319: b"memfd_create",
320: b"kexec_file_load",
321: b"bpf",
322: b"execveat",
323: b"userfaultfd",
324: b"membarrier",
325: b"mlock2",
326: b"copy_file_range",
327: b"preadv2",
328: b"pwritev2",
329: b"pkey_mprotect",
330: b"pkey_alloc",
331: b"pkey_free",
332: b"statx",
333: b"io_pgetevents",
334: b"rseq",
335: b"uretprobe",
424: b"pidfd_send_signal",
425: b"io_uring_setup",
426: b"io_uring_enter",
427: b"io_uring_register",
428: b"open_tree",
429: b"move_mount",
430: b"fsopen",
431: b"fsconfig",
432: b"fsmount",
433: b"fspick",
434: b"pidfd_open",
435: b"clone3",
436: b"close_range",
437: b"openat2",
438: b"pidfd_getfd",
439: b"faccessat2",
440: b"process_madvise",
441: b"epoll_pwait2",
442: b"mount_setattr",
443: b"quotactl_fd",
444: b"landlock_create_ruleset",
445: b"landlock_add_rule",
446: b"landlock_restrict_self",
447: b"memfd_secret",
448: b"process_mrelease",
449: b"futex_waitv",
450: b"set_mempolicy_home_node",
451: b"cachestat",
452: b"fchmodat2",
453: b"map_shadow_stack",
454: b"futex_wake",
455: b"futex_wait",
456: b"futex_requeue",
457: b"statmount",
458: b"listmount",
459: b"lsm_get_self_attr",
460: b"lsm_set_self_attr",
461: b"lsm_list_modules",
462: b"mseal",
463: b"setxattrat",
464: b"getxattrat",
465: b"listxattrat",
466: b"removexattrat",
467: b"open_tree_attr",
468: b"file_getattr",
469: b"file_setattr",
512: b"rt_sigaction",
513: b"rt_sigreturn",
514: b"ioctl",
515: b"readv",
516: b"writev",
517: b"recvfrom",
518: b"sendmsg",
519: b"recvmsg",
520: b"execve",
521: b"ptrace",
522: b"rt_sigpending",
523: b"rt_sigtimedwait",
524: b"rt_sigqueueinfo",
525: b"sigaltstack",
526: b"timer_create",
527: b"mq_notify",
528: b"kexec_load",
529: b"waitid",
530: b"set_robust_list",
531: b"get_robust_list",
532: b"vmsplice",
533: b"move_pages",
534: b"preadv",
535: b"pwritev",
536: b"rt_tgsigqueueinfo",
537: b"recvmmsg",
538: b"sendmmsg",
539: b"process_vm_readv",
540: b"process_vm_writev",
541: b"setsockopt",
542: b"getsockopt",
543: b"io_setup",
544: b"io_submit",
545: b"execveat",
546: b"preadv2",
547: b"pwritev2",
}

View File

@ -1,117 +0,0 @@
"""
PythonBPF eBPF Probe for Syscall Histogram Collection
"""
from vmlinux import struct_trace_event_raw_sys_enter
from pythonbpf import bpf, map, section, bpfglobal, BPF
from pythonbpf.helper import pid
from pythonbpf.maps import HashMap
from ctypes import c_int64
from lib import MAX_SYSCALLS, comm_for_pid
@bpf
@map
def histogram() -> HashMap:
return HashMap(key=c_int64, value=c_int64, max_entries=1024)
@bpf
@map
def target_pid_map() -> HashMap:
return HashMap(key=c_int64, value=c_int64, max_entries=1)
@bpf
@section("tracepoint/raw_syscalls/sys_enter")
def trace_syscall(ctx: struct_trace_event_raw_sys_enter) -> c_int64:
syscall_id = ctx.id
current_pid = pid()
target = target_pid_map.lookup(0)
if target:
if current_pid != target:
return 0 # type: ignore
if syscall_id < 0 or syscall_id >= 548:
return 0 # type: ignore
count = histogram.lookup(syscall_id)
if count:
histogram.update(syscall_id, count + 1)
else:
histogram.update(syscall_id, 1)
return 0 # type: ignore
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
ebpf_prog = BPF()
class Probe:
"""
Syscall histogram probe for a target process.
Usage:
probe = Probe(target_pid=1234)
probe.start()
histogram = probe.get_histogram()
"""
def __init__(self, target_pid: int, max_syscalls: int = MAX_SYSCALLS):
self.target_pid = target_pid
self.max_syscalls = max_syscalls
self.comm = comm_for_pid(target_pid)
if self.comm is None:
raise ValueError(f"Cannot find process with PID {target_pid}")
self._bpf = None
self._histogram_map = None
self._target_map = None
def start(self):
"""Compile, load, and attach the BPF probe."""
# Compile and load
self._bpf = ebpf_prog
self._bpf.load()
self._bpf.attach_all()
# Get map references
self._histogram_map = self._bpf["histogram"]
self._target_map = self._bpf["target_pid_map"]
# Set target PID in the map
self._target_map.update(0, self.target_pid)
return self
def get_histogram(self) -> list:
"""Read current histogram values as a list."""
if self._histogram_map is None:
raise RuntimeError("Probe not started. Call start() first.")
result = [0] * self.max_syscalls
for syscall_id in range(self.max_syscalls):
try:
count = self._histogram_map.lookup(syscall_id)
if count is not None:
result[syscall_id] = int(count)
except Exception:
pass
return result
def __getitem__(self, syscall_id: int) -> int:
"""Allow indexing: probe[syscall_id]"""
if self._histogram_map is None:
raise RuntimeError("Probe not started")
try:
count = self._histogram_map.lookup(syscall_id)
return int(count) if count is not None else 0
except Exception:
return 0

View File

@ -1,335 +0,0 @@
#!/usr/bin/env python3
"""
Process Behavior Anomaly Detection using PythonBPF and Autoencoders
Ported from evilsocket's BCC implementation to PythonBPF.
https://github.com/evilsocket/ebpf-process-anomaly-detection
Usage:
# 1.Learn normal behavior from a process
sudo python main.py --learn --pid 1234 --data normal.csv
# 2.Train the autoencoder (no sudo needed)
python main.py --train --data normal.csv --model model.h5
# 3.Monitor for anomalies
sudo python main.py --run --pid 1234 --model model.h5
"""
import argparse
import logging
import os
import sys
import time
from collections import Counter
from lib import MAX_SYSCALLS
from lib.ml import AutoEncoder
from lib.platform import SYSCALLS
from lib.probe import Probe
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
logger = logging.getLogger(__name__)
def learn(pid: int, data_path: str, poll_interval_ms: int) -> None:
"""
Capture syscall patterns from target process.
Args:
pid: Target process ID
data_path: Path to save CSV data
poll_interval_ms: Polling interval in milliseconds
"""
if os.path.exists(data_path):
logger.error(
f"{data_path} already exists.Delete it or use a different filename."
)
sys.exit(1)
try:
probe = Probe(pid)
except ValueError as e:
logger.error(str(e))
sys.exit(1)
probe_comm = probe.comm.decode() if probe.comm else "unknown"
print(f"📊 Learning from process {pid} ({probe_comm})")
print(f"📁 Saving data to {data_path}")
print(f"⏱️ Polling interval: {poll_interval_ms}ms")
print("Press Ctrl+C to stop...\n")
probe.start()
prev_histogram = [0.0] * MAX_SYSCALLS
prev_report_time = time.time()
sample_count = 0
poll_interval_sec = poll_interval_ms / 1000.0
header = "sample_time," + ",".join(f"sys_{i}" for i in range(MAX_SYSCALLS))
with open(data_path, "w") as fp:
fp.write(header + "\n")
try:
while True:
histogram = [float(x) for x in probe.get_histogram()]
if histogram != prev_histogram:
deltas = _compute_deltas(prev_histogram, histogram)
prev_histogram = histogram.copy()
row = f"{time.time()},{','.join(map(str, deltas))}"
fp.write(row + "\n")
fp.flush()
sample_count += 1
now = time.time()
if now - prev_report_time >= 1.0:
print(f" {sample_count} samples saved...")
prev_report_time = now
time.sleep(poll_interval_sec)
except KeyboardInterrupt:
print(f"\n✅ Stopped. Saved {sample_count} samples to {data_path}")
def train(data_path: str, model_path: str, epochs: int, batch_size: int) -> None:
"""
Train autoencoder on captured data.
Args:
data_path: Path to training CSV data
model_path: Path to save trained model
epochs: Number of training epochs
batch_size: Training batch size
"""
if not os.path.exists(data_path):
logger.error(f"Data file {data_path} not found.Run --learn first.")
sys.exit(1)
print(f"🧠 Training autoencoder on {data_path}")
print(f" Epochs: {epochs}")
print(f" Batch size: {batch_size}")
print()
ae = AutoEncoder(model_path)
_, threshold = ae.train(data_path, epochs, batch_size)
print()
print("=" * 50)
print("✅ Training complete!")
print(f" Model saved to: {model_path}")
print(f" Error threshold: {threshold:.6f}")
print()
print(f"💡 Use --max-error {threshold:.4f} when running detection")
print("=" * 50)
def run(pid: int, model_path: str, max_error: float, poll_interval_ms: int) -> None:
"""
Monitor process and detect anomalies.
Args:
pid: Target process ID
model_path: Path to trained model
max_error: Anomaly detection threshold
poll_interval_ms: Polling interval in milliseconds
"""
if not os.path.exists(model_path):
logger.error(f"Model file {model_path} not found. Run --train first.")
sys.exit(1)
try:
probe = Probe(pid)
except ValueError as e:
logger.error(str(e))
sys.exit(1)
ae = AutoEncoder(model_path, load=True)
probe_comm = probe.comm.decode() if probe.comm else "unknown"
print(f"🔍 Monitoring process {pid} ({probe_comm}) for anomalies")
print(f" Error threshold: {max_error}")
print(f" Polling interval: {poll_interval_ms}ms")
print("Press Ctrl+C to stop...\n")
probe.start()
prev_histogram = [0.0] * MAX_SYSCALLS
anomaly_count = 0
check_count = 0
poll_interval_sec = poll_interval_ms / 1000.0
try:
while True:
histogram = [float(x) for x in probe.get_histogram()]
if histogram != prev_histogram:
deltas = _compute_deltas(prev_histogram, histogram)
prev_histogram = histogram.copy()
check_count += 1
_, feat_errors, total_error = ae.predict([deltas])
if total_error > max_error:
anomaly_count += 1
_report_anomaly(anomaly_count, total_error, max_error, feat_errors)
time.sleep(poll_interval_sec)
except KeyboardInterrupt:
print("\n✅ Stopped.")
print(f" Checks performed: {check_count}")
print(f" Anomalies detected: {anomaly_count}")
def _compute_deltas(prev: list[float], current: list[float]) -> list[float]:
"""Compute rate of change between two histograms."""
deltas = []
for p, c in zip(prev, current):
if c != 0.0:
delta = 1.0 - (p / c)
else:
delta = 0.0
deltas.append(delta)
return deltas
def _report_anomaly(
count: int,
total_error: float,
threshold: float,
feat_errors: list[float],
) -> None:
"""Print anomaly report with top offending syscalls."""
print(f"🚨 ANOMALY #{count} detected!")
print(f" Total error: {total_error:.4f} (threshold: {threshold})")
errors_by_syscall = {idx: err for idx, err in enumerate(feat_errors)}
top3 = Counter(errors_by_syscall).most_common(3)
print(" Top anomalous syscalls:")
for idx, err in top3:
name = SYSCALLS.get(idx, f"syscall_{idx}")
print(f"{name!r}: {err:.4f}")
print()
def parse_args() -> argparse.Namespace:
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Process anomaly detection with PythonBPF and Autoencoders",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Learn from a process (e.g., Firefox) for a few minutes
sudo python main.py --learn --pid $(pgrep -o firefox) --data firefox.csv
# Train the model (no sudo needed)
python main.py --train --data firefox.csv --model firefox.h5
# Monitor the same process for anomalies
sudo python main.py --run --pid $(pgrep -o firefox) --model firefox.h5
# Full workflow for nginx:
sudo python main.py --learn --pid $(pgrep -o nginx) --data nginx_normal.csv
python main.py --train --data nginx_normal.csv --model nginx.h5 --epochs 100
sudo python main.py --run --pid $(pgrep -o nginx) --model nginx.h5 --max-error 0.05
""",
)
actions = parser.add_mutually_exclusive_group()
actions.add_argument(
"--learn",
action="store_true",
help="Capture syscall patterns from a process",
)
actions.add_argument(
"--train",
action="store_true",
help="Train autoencoder on captured data",
)
actions.add_argument(
"--run",
action="store_true",
help="Monitor process for anomalies",
)
parser.add_argument(
"--pid",
type=int,
default=0,
help="Target process ID",
)
parser.add_argument(
"--data",
default="data.csv",
help="CSV file for training data (default: data.csv)",
)
parser.add_argument(
"--model",
default="model.keras",
help="Model file path (default: model.h5)",
)
parser.add_argument(
"--time",
type=int,
default=100,
help="Polling interval in milliseconds (default: 100)",
)
parser.add_argument(
"--epochs",
type=int,
default=200,
help="Training epochs (default: 200)",
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="Training batch size (default: 16)",
)
parser.add_argument(
"--max-error",
type=float,
default=0.09,
help="Anomaly detection threshold (default: 0.09)",
)
return parser.parse_args()
def main() -> None:
"""Main entry point."""
args = parse_args()
if not any([args.learn, args.train, args.run]):
print("No action specified.Use --learn, --train, or --run.")
print("Run with --help for usage information.")
sys.exit(0)
if args.learn:
if args.pid == 0:
logger.error("--pid required for --learn")
sys.exit(1)
learn(args.pid, args.data, args.time)
elif args.train:
train(args.data, args.model, args.epochs, args.batch_size)
elif args.run:
if args.pid == 0:
logger.error("--pid required for --run")
sys.exit(1)
run(args.pid, args.model, args.max_error, args.time)
if __name__ == "__main__":
main()

View File

@ -21,17 +21,17 @@ def last() -> HashMap:
@section("tracepoint/syscalls/sys_enter_execve") @section("tracepoint/syscalls/sys_enter_execve")
def do_trace(ctx: c_void_p) -> c_int64: def do_trace(ctx: c_void_p) -> c_int64:
key = 0 key = 0
tsp = last.lookup(key) tsp = last().lookup(key)
if tsp: if tsp:
kt = ktime() kt = ktime()
delta = kt - tsp delta = kt - tsp
if delta < 1000000000: if delta < 1000000000:
time_ms = delta // 1000000 time_ms = delta // 1000000
print(f"Execve syscall entered within last second, last {time_ms} ms ago") print(f"Execve syscall entered within last second, last {time_ms} ms ago")
last.delete(key) last().delete(key)
else: else:
kt = ktime() kt = ktime()
last.update(key, kt) last().update(key, kt)
return c_int64(0) return c_int64(0)

File diff suppressed because one or more lines are too long

View File

@ -3,6 +3,7 @@ import time
from pythonbpf import bpf, map, section, bpfglobal, BPF from pythonbpf import bpf, map, section, bpfglobal, BPF
from pythonbpf.helper import pid from pythonbpf.helper import pid
from pythonbpf.maps import HashMap from pythonbpf.maps import HashMap
from pylibbpf import BpfMap
from ctypes import c_void_p, c_int64, c_uint64, c_int32 from ctypes import c_void_p, c_int64, c_uint64, c_int32
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@ -25,14 +26,14 @@ def hist() -> HashMap:
def hello(ctx: c_void_p) -> c_int64: def hello(ctx: c_void_p) -> c_int64:
process_id = pid() process_id = pid()
one = 1 one = 1
prev = hist.lookup(process_id) prev = hist().lookup(process_id)
if prev: if prev:
previous_value = prev + 1 previous_value = prev + 1
print(f"count: {previous_value} with {process_id}") print(f"count: {previous_value} with {process_id}")
hist.update(process_id, previous_value) hist().update(process_id, previous_value)
return c_int64(0) return c_int64(0)
else: else:
hist.update(process_id, one) hist().update(process_id, one)
return c_int64(0) return c_int64(0)
@ -43,12 +44,12 @@ def LICENSE() -> str:
b = BPF() b = BPF()
b.load() b.load_and_attach()
b.attach_all() hist = BpfMap(b, hist)
print("Recording") print("Recording")
time.sleep(10) time.sleep(10)
counts = list(b["hist"].values()) counts = list(hist.values())
plt.hist(counts, bins=20) plt.hist(counts, bins=20)
plt.xlabel("Clone calls per PID") plt.xlabel("Clone calls per PID")

View File

@ -1,49 +0,0 @@
# Container Monitor TUI
A beautiful terminal-based container monitoring tool that combines syscall tracking, file I/O monitoring, and network traffic analysis using eBPF.
## Features
- 🎯 **Interactive Cgroup Selection** - Navigate and select cgroups with arrow keys
- 📊 **Real-time Monitoring** - Live graphs and statistics
- 🔥 **Syscall Tracking** - Total syscall count per cgroup
- 💾 **File I/O Monitoring** - Read/write operations and bytes with graphs
- 🌐 **Network Traffic** - RX/TX packets and bytes with live graphs
-**Efficient Caching** - Reduced /proc lookups for better performance
- 🎨 **Beautiful TUI** - Clean, colorful terminal interface
## Requirements
- Python 3.7+
- pythonbpf
- Root privileges (for eBPF)
## Installation
```bash
# Ensure you have pythonbpf installed
pip install pythonbpf
# Run the monitor
sudo $(which python) container_monitor.py
```
## Usage
1. **Selection Screen**: Use ↑↓ arrow keys to navigate through cgroups, press ENTER to select
2. **Monitoring Screen**: View real-time graphs and statistics, press ESC or 'b' to go back
3. **Exit**: Press 'q' at any time to quit
## Architecture
- `container_monitor.py` - Main BPF program combining all three tracers
- `data_collector.py` - Data collection, caching, and history management
- `tui. py` - Terminal user interface with selection and monitoring screens
## BPF Programs
- **vfs_read/vfs_write** - Track file I/O operations
- **__netif_receive_skb/__dev_queue_xmit** - Track network traffic
- **raw_syscalls/sys_enter** - Count all syscalls
All programs filter by cgroup ID for per-container monitoring.

View File

@ -1,220 +0,0 @@
"""Container Monitor - TUI-based cgroup monitoring combining syscall, file I/O, and network tracking."""
from pythonbpf import bpf, map, section, bpfglobal, struct, BPF
from pythonbpf.maps import HashMap
from pythonbpf.helper import get_current_cgroup_id
from ctypes import c_int32, c_uint64, c_void_p
from vmlinux import struct_pt_regs, struct_sk_buff
from data_collection import ContainerDataCollector
from tui import ContainerMonitorTUI
# ==================== BPF Structs ====================
@bpf
@struct
class read_stats:
bytes: c_uint64
ops: c_uint64
@bpf
@struct
class write_stats:
bytes: c_uint64
ops: c_uint64
@bpf
@struct
class net_stats:
rx_packets: c_uint64
tx_packets: c_uint64
rx_bytes: c_uint64
tx_bytes: c_uint64
# ==================== BPF Maps ====================
@bpf
@map
def read_map() -> HashMap:
return HashMap(key=c_uint64, value=read_stats, max_entries=1024)
@bpf
@map
def write_map() -> HashMap:
return HashMap(key=c_uint64, value=write_stats, max_entries=1024)
@bpf
@map
def net_stats_map() -> HashMap:
return HashMap(key=c_uint64, value=net_stats, max_entries=1024)
@bpf
@map
def syscall_count() -> HashMap:
return HashMap(key=c_uint64, value=c_uint64, max_entries=1024)
# ==================== File I/O Tracing ====================
@bpf
@section("kprobe/vfs_read")
def trace_read(ctx: struct_pt_regs) -> c_int32:
cg = get_current_cgroup_id()
count = c_uint64(ctx.dx)
ptr = read_map.lookup(cg)
if ptr:
s = read_stats()
s.bytes = ptr.bytes + count
s.ops = ptr.ops + 1
read_map.update(cg, s)
else:
s = read_stats()
s.bytes = count
s.ops = c_uint64(1)
read_map.update(cg, s)
return c_int32(0)
@bpf
@section("kprobe/vfs_write")
def trace_write(ctx1: struct_pt_regs) -> c_int32:
cg = get_current_cgroup_id()
count = c_uint64(ctx1.dx)
ptr = write_map.lookup(cg)
if ptr:
s = write_stats()
s.bytes = ptr.bytes + count
s.ops = ptr.ops + 1
write_map.update(cg, s)
else:
s = write_stats()
s.bytes = count
s.ops = c_uint64(1)
write_map.update(cg, s)
return c_int32(0)
# ==================== Network I/O Tracing ====================
@bpf
@section("kprobe/__netif_receive_skb")
def trace_netif_rx(ctx2: struct_pt_regs) -> c_int32:
cgroup_id = get_current_cgroup_id()
skb = struct_sk_buff(ctx2.di)
pkt_len = c_uint64(skb.len)
stats_ptr = net_stats_map.lookup(cgroup_id)
if stats_ptr:
stats = net_stats()
stats.rx_packets = stats_ptr.rx_packets + 1
stats.tx_packets = stats_ptr.tx_packets
stats.rx_bytes = stats_ptr.rx_bytes + pkt_len
stats.tx_bytes = stats_ptr.tx_bytes
net_stats_map.update(cgroup_id, stats)
else:
stats = net_stats()
stats.rx_packets = c_uint64(1)
stats.tx_packets = c_uint64(0)
stats.rx_bytes = pkt_len
stats.tx_bytes = c_uint64(0)
net_stats_map.update(cgroup_id, stats)
return c_int32(0)
@bpf
@section("kprobe/__dev_queue_xmit")
def trace_dev_xmit(ctx3: struct_pt_regs) -> c_int32:
cgroup_id = get_current_cgroup_id()
skb = struct_sk_buff(ctx3.di)
pkt_len = c_uint64(skb.len)
stats_ptr = net_stats_map.lookup(cgroup_id)
if stats_ptr:
stats = net_stats()
stats.rx_packets = stats_ptr.rx_packets
stats.tx_packets = stats_ptr.tx_packets + 1
stats.rx_bytes = stats_ptr.rx_bytes
stats.tx_bytes = stats_ptr.tx_bytes + pkt_len
net_stats_map.update(cgroup_id, stats)
else:
stats = net_stats()
stats.rx_packets = c_uint64(0)
stats.tx_packets = c_uint64(1)
stats.rx_bytes = c_uint64(0)
stats.tx_bytes = pkt_len
net_stats_map.update(cgroup_id, stats)
return c_int32(0)
# ==================== Syscall Tracing ====================
@bpf
@section("tracepoint/raw_syscalls/sys_enter")
def count_syscalls(ctx: c_void_p) -> c_int32:
cgroup_id = get_current_cgroup_id()
count_ptr = syscall_count.lookup(cgroup_id)
if count_ptr:
new_count = count_ptr + c_uint64(1)
syscall_count.update(cgroup_id, new_count)
else:
syscall_count.update(cgroup_id, c_uint64(1))
return c_int32(0)
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# ==================== Main ====================
if __name__ == "__main__":
print("🔥 Loading BPF programs...")
# Load and attach BPF program
b = BPF()
b.load()
b.attach_all()
# Get map references and enable struct deserialization
read_map_ref = b["read_map"]
write_map_ref = b["write_map"]
net_stats_map_ref = b["net_stats_map"]
syscall_count_ref = b["syscall_count"]
read_map_ref.set_value_struct("read_stats")
write_map_ref.set_value_struct("write_stats")
net_stats_map_ref.set_value_struct("net_stats")
print("✅ BPF programs loaded and attached")
# Setup data collector
collector = ContainerDataCollector(
read_map_ref, write_map_ref, net_stats_map_ref, syscall_count_ref
)
# Create and run TUI
tui = ContainerMonitorTUI(collector)
tui.run()

View File

@ -1,208 +0,0 @@
"""Data collection and management for container monitoring."""
import os
import time
from pathlib import Path
from typing import Dict, List, Set, Optional
from dataclasses import dataclass
from collections import deque, defaultdict
@dataclass
class CgroupInfo:
"""Information about a cgroup."""
id: int
name: str
path: str
@dataclass
class ContainerStats:
"""Statistics for a container/cgroup."""
cgroup_id: int
cgroup_name: str
# File I/O
read_ops: int = 0
read_bytes: int = 0
write_ops: int = 0
write_bytes: int = 0
# Network I/O
rx_packets: int = 0
rx_bytes: int = 0
tx_packets: int = 0
tx_bytes: int = 0
# Syscalls
syscall_count: int = 0
# Timestamp
timestamp: float = 0.0
class ContainerDataCollector:
"""Collects and manages container monitoring data from BPF."""
def __init__(
self, read_map, write_map, net_stats_map, syscall_map, history_size: int = 100
):
self.read_map = read_map
self.write_map = write_map
self.net_stats_map = net_stats_map
self.syscall_map = syscall_map
# Caching
self._cgroup_cache: Dict[int, CgroupInfo] = {}
self._cgroup_cache_time = 0
self._cache_ttl = 5.0
0 # Refresh cache every 5 seconds
# Historical data for graphing
self._history_size = history_size
self._history: Dict[int, deque] = defaultdict(
lambda: deque(maxlen=history_size)
)
def get_all_cgroups(self) -> List[CgroupInfo]:
"""Get all cgroups with caching."""
current_time = time.time()
# Use cached data if still valid
if current_time - self._cgroup_cache_time < self._cache_ttl:
return list(self._cgroup_cache.values())
# Refresh cache
self._refresh_cgroup_cache()
return list(self._cgroup_cache.values())
def _refresh_cgroup_cache(self):
"""Refresh the cgroup cache from /proc."""
cgroup_map: Dict[int, Set[str]] = defaultdict(set)
# Scan /proc to find all cgroups
for proc_dir in Path("/proc").glob("[0-9]*"):
try:
cgroup_file = proc_dir / "cgroup"
if not cgroup_file.exists():
continue
with open(cgroup_file) as f:
for line in f:
parts = line.strip().split(":")
if len(parts) >= 3:
cgroup_path = parts[2]
cgroup_mount = f"/sys/fs/cgroup{cgroup_path}"
if os.path.exists(cgroup_mount):
stat_info = os.stat(cgroup_mount)
cgroup_id = stat_info.st_ino
cgroup_map[cgroup_id].add(cgroup_path)
except (PermissionError, FileNotFoundError, OSError):
continue
# Update cache with best names
new_cache = {}
for cgroup_id, paths in cgroup_map.items():
# Pick the most descriptive path
best_path = self._get_best_cgroup_path(paths)
name = self._get_cgroup_name(best_path)
new_cache[cgroup_id] = CgroupInfo(id=cgroup_id, name=name, path=best_path)
self._cgroup_cache = new_cache
self._cgroup_cache_time = time.time()
def _get_best_cgroup_path(self, paths: Set[str]) -> str:
"""Select the most descriptive cgroup path."""
path_list = list(paths)
# Prefer paths with more components (more specific)
# Prefer paths containing docker, podman, etc.
for keyword in ["docker", "podman", "kubernetes", "k8s", "systemd"]:
for path in path_list:
if keyword in path.lower():
return path
# Return longest path (most specific)
return max(path_list, key=lambda p: (len(p.split("/")), len(p)))
def _get_cgroup_name(self, path: str) -> str:
"""Extract a friendly name from cgroup path."""
if not path or path == "/":
return "root"
# Remove leading/trailing slashes
path = path.strip("/")
# Try to extract container ID or service name
parts = path.split("/")
# For Docker: /docker/<container_id>
if "docker" in path.lower():
for i, part in enumerate(parts):
if part.lower() == "docker" and i + 1 < len(parts):
container_id = parts[i + 1][:12] # Short ID
return f"docker:{container_id}"
# For systemd services
if "system.slice" in path:
for part in parts:
if part.endswith(".service"):
return part.replace(".service", "")
# For user slices
if "user.slice" in path:
return f"user:{parts[-1]}" if parts else "user"
# Default: use last component
return parts[-1] if parts else path
def get_stats_for_cgroup(self, cgroup_id: int) -> ContainerStats:
"""Get current statistics for a specific cgroup."""
cgroup_info = self._cgroup_cache.get(cgroup_id)
cgroup_name = cgroup_info.name if cgroup_info else f"cgroup-{cgroup_id}"
stats = ContainerStats(
cgroup_id=cgroup_id, cgroup_name=cgroup_name, timestamp=time.time()
)
# Get file I/O stats
read_stat = self.read_map.lookup(cgroup_id)
if read_stat:
stats.read_ops = int(read_stat.ops)
stats.read_bytes = int(read_stat.bytes)
write_stat = self.write_map.lookup(cgroup_id)
if write_stat:
stats.write_ops = int(write_stat.ops)
stats.write_bytes = int(write_stat.bytes)
# Get network stats
net_stat = self.net_stats_map.lookup(cgroup_id)
if net_stat:
stats.rx_packets = int(net_stat.rx_packets)
stats.rx_bytes = int(net_stat.rx_bytes)
stats.tx_packets = int(net_stat.tx_packets)
stats.tx_bytes = int(net_stat.tx_bytes)
# Get syscall count
syscall_cnt = self.syscall_map.lookup(cgroup_id)
if syscall_cnt is not None:
stats.syscall_count = int(syscall_cnt)
# Add to history
self._history[cgroup_id].append(stats)
return stats
def get_history(self, cgroup_id: int) -> List[ContainerStats]:
"""Get historical statistics for graphing."""
return list(self._history[cgroup_id])
def get_cgroup_info(self, cgroup_id: int) -> Optional[CgroupInfo]:
"""Get cached cgroup information."""
return self._cgroup_cache.get(cgroup_id)

View File

@ -1,752 +0,0 @@
"""Terminal User Interface for container monitoring."""
import time
import curses
import threading
from typing import Optional, List
from data_collection import ContainerDataCollector
from web_dashboard import WebDashboard
def _safe_addstr(stdscr, y: int, x: int, text: str, *args):
"""Safely add string to screen with bounds checking."""
try:
height, width = stdscr.getmaxyx()
if 0 <= y < height and 0 <= x < width:
# Truncate text to fit
max_len = width - x - 1
if max_len > 0:
stdscr.addstr(y, x, text[:max_len], *args)
except curses.error:
pass
def _draw_fancy_header(stdscr, title: str, subtitle: str):
"""Draw a fancy header with title and subtitle."""
height, width = stdscr.getmaxyx()
# Top border
_safe_addstr(stdscr, 0, 0, "" * width, curses.color_pair(6) | curses.A_BOLD)
# Title
_safe_addstr(
stdscr,
0,
max(0, (width - len(title)) // 2),
f" {title} ",
curses.color_pair(6) | curses.A_BOLD,
)
# Subtitle
_safe_addstr(
stdscr,
1,
max(0, (width - len(subtitle)) // 2),
subtitle,
curses.color_pair(1),
)
# Bottom border
_safe_addstr(stdscr, 2, 0, "" * width, curses.color_pair(6))
def _draw_metric_box(
stdscr,
y: int,
x: int,
width: int,
label: str,
value: str,
detail: str,
color_pair: int,
):
"""Draw a fancy box for displaying a metric."""
height, _ = stdscr.getmaxyx()
if y + 4 >= height:
return
# Top border
_safe_addstr(
stdscr, y, x, "" + "" * (width - 2) + "", color_pair | curses.A_BOLD
)
# Label
_safe_addstr(stdscr, y + 1, x, "", color_pair | curses.A_BOLD)
_safe_addstr(stdscr, y + 1, x + 2, label, color_pair | curses.A_BOLD)
_safe_addstr(stdscr, y + 1, x + width - 1, "", color_pair | curses.A_BOLD)
# Value
_safe_addstr(stdscr, y + 2, x, "", color_pair | curses.A_BOLD)
_safe_addstr(stdscr, y + 2, x + 4, value, curses.color_pair(2) | curses.A_BOLD)
_safe_addstr(
stdscr,
y + 2,
min(x + width - len(detail) - 3, x + width - 2),
detail,
color_pair | curses.A_BOLD,
)
_safe_addstr(stdscr, y + 2, x + width - 1, "", color_pair | curses.A_BOLD)
# Bottom border
_safe_addstr(
stdscr, y + 3, x, "" + "" * (width - 2) + "", color_pair | curses.A_BOLD
)
def _draw_section_header(stdscr, y: int, title: str, color_pair: int):
"""Draw a section header."""
height, width = stdscr.getmaxyx()
if y >= height:
return
_safe_addstr(stdscr, y, 2, title, curses.color_pair(color_pair) | curses.A_BOLD)
_safe_addstr(
stdscr,
y,
len(title) + 3,
"" * (width - len(title) - 5),
curses.color_pair(color_pair) | curses.A_BOLD,
)
def _calculate_rates(history: List) -> dict:
"""Calculate per-second rates from history."""
if len(history) < 2:
return {
"syscalls_per_sec": 0.0,
"rx_bytes_per_sec": 0.0,
"tx_bytes_per_sec": 0.0,
"rx_pkts_per_sec": 0.0,
"tx_pkts_per_sec": 0.0,
"read_bytes_per_sec": 0.0,
"write_bytes_per_sec": 0.0,
"read_ops_per_sec": 0.0,
"write_ops_per_sec": 0.0,
}
# Calculate delta between last two samples
recent = history[-1]
previous = history[-2]
time_delta = recent.timestamp - previous.timestamp
if time_delta <= 0:
time_delta = 1.0
return {
"syscalls_per_sec": (recent.syscall_count - previous.syscall_count)
/ time_delta,
"rx_bytes_per_sec": (recent.rx_bytes - previous.rx_bytes) / time_delta,
"tx_bytes_per_sec": (recent.tx_bytes - previous.tx_bytes) / time_delta,
"rx_pkts_per_sec": (recent.rx_packets - previous.rx_packets) / time_delta,
"tx_pkts_per_sec": (recent.tx_packets - previous.tx_packets) / time_delta,
"read_bytes_per_sec": (recent.read_bytes - previous.read_bytes) / time_delta,
"write_bytes_per_sec": (recent.write_bytes - previous.write_bytes) / time_delta,
"read_ops_per_sec": (recent.read_ops - previous.read_ops) / time_delta,
"write_ops_per_sec": (recent.write_ops - previous.write_ops) / time_delta,
}
def _format_bytes(bytes_val: float) -> str:
"""Format bytes into human-readable string."""
if bytes_val < 0:
bytes_val = 0
for unit in ["B", "KB", "MB", "GB", "TB"]:
if bytes_val < 1024.0:
return f"{bytes_val:.1f}{unit}"
bytes_val /= 1024.0
return f"{bytes_val:.1f}PB"
def _draw_bar_graph_enhanced(
stdscr,
y: int,
x: int,
width: int,
height: int,
data: List[float],
color_pair: int,
):
"""Draw an enhanced bar graph with axis and scale."""
screen_height, screen_width = stdscr.getmaxyx()
if not data or width < 2 or y + height >= screen_height:
return
# Calculate statistics
max_val = max(data) if max(data) > 0 else 1
min_val = min(data)
avg_val = sum(data) / len(data)
# Take last 'width - 12' data points (leave room for Y-axis)
graph_width = max(1, width - 12)
recent_data = data[-graph_width:] if len(data) > graph_width else data
# Draw Y-axis labels (with bounds checking)
if y < screen_height:
_safe_addstr(
stdscr, y, x, f"{_format_bytes(max_val):>9}", curses.color_pair(7)
)
if y + height // 2 < screen_height:
_safe_addstr(
stdscr,
y + height // 2,
x,
f"{_format_bytes(avg_val):>9}",
curses.color_pair(7),
)
if y + height - 1 < screen_height:
_safe_addstr(
stdscr,
y + height - 1,
x,
f"{_format_bytes(min_val):>9}",
curses.color_pair(7),
)
# Draw bars
for row in range(height):
if y + row >= screen_height:
break
threshold = (height - row) / height
bar_line = ""
for val in recent_data:
normalized = val / max_val if max_val > 0 else 0
if normalized >= threshold:
bar_line += ""
elif normalized >= threshold - 0.15:
bar_line += ""
elif normalized >= threshold - 0.35:
bar_line += ""
elif normalized >= threshold - 0.5:
bar_line += ""
else:
bar_line += " "
_safe_addstr(stdscr, y + row, x + 11, bar_line, color_pair)
# Draw X-axis
if y + height < screen_height:
_safe_addstr(
stdscr,
y + height,
x + 10,
"" + "" * len(recent_data),
curses.color_pair(7),
)
_safe_addstr(
stdscr,
y + height,
x + 10 + len(recent_data),
"→ time",
curses.color_pair(7),
)
def _draw_labeled_graph(
stdscr,
y: int,
x: int,
width: int,
height: int,
label: str,
rate: str,
detail: str,
data: List[float],
color_pair: int,
description: str,
):
"""Draw a graph with labels and legend."""
screen_height, screen_width = stdscr.getmaxyx()
if y >= screen_height or y + height + 2 >= screen_height:
return
# Header with metrics
_safe_addstr(stdscr, y, x, label, curses.color_pair(1) | curses.A_BOLD)
_safe_addstr(stdscr, y, x + len(label) + 2, rate, curses.color_pair(2))
_safe_addstr(
stdscr, y, x + len(label) + len(rate) + 4, detail, curses.color_pair(7)
)
# Draw the graph
if len(data) > 1:
_draw_bar_graph_enhanced(stdscr, y + 1, x, width, height, data, color_pair)
else:
_safe_addstr(stdscr, y + 2, x + 2, "Collecting data...", curses.color_pair(7))
# Graph legend
if y + height + 1 < screen_height:
_safe_addstr(
stdscr, y + height + 1, x, f"└─ {description}", curses.color_pair(7)
)
class ContainerMonitorTUI:
"""TUI for container monitoring with cgroup selection and live graphs."""
def __init__(self, collector: ContainerDataCollector):
self.collector = collector
self.selected_cgroup: Optional[int] = None
self.current_screen = "selection" # "selection" or "monitoring"
self.selected_index = 0
self.scroll_offset = 0
self.web_dashboard = None
self.web_thread = None
def run(self):
"""Run the TUI application."""
curses.wrapper(self._main_loop)
def _main_loop(self, stdscr):
"""Main curses loop."""
# Configure curses
curses.curs_set(0) # Hide cursor
stdscr.nodelay(True) # Non-blocking input
stdscr.timeout(100) # Refresh every 100ms
# Initialize colors
curses.start_color()
curses.init_pair(1, curses.COLOR_CYAN, curses.COLOR_BLACK)
curses.init_pair(2, curses.COLOR_GREEN, curses.COLOR_BLACK)
curses.init_pair(3, curses.COLOR_YELLOW, curses.COLOR_BLACK)
curses.init_pair(4, curses.COLOR_RED, curses.COLOR_BLACK)
curses.init_pair(5, curses.COLOR_MAGENTA, curses.COLOR_BLACK)
curses.init_pair(6, curses.COLOR_WHITE, curses.COLOR_BLUE)
curses.init_pair(7, curses.COLOR_BLUE, curses.COLOR_BLACK)
curses.init_pair(8, curses.COLOR_WHITE, curses.COLOR_CYAN)
while True:
stdscr.clear()
try:
height, width = stdscr.getmaxyx()
# Check minimum terminal size
if height < 25 or width < 80:
msg = "Terminal too small! Minimum: 80x25"
stdscr.attron(curses.color_pair(4) | curses.A_BOLD)
stdscr.addstr(
height // 2, max(0, (width - len(msg)) // 2), msg[: width - 1]
)
stdscr.attroff(curses.color_pair(4) | curses.A_BOLD)
stdscr.refresh()
key = stdscr.getch()
if key == ord("q") or key == ord("Q"):
break
continue
if self.current_screen == "selection":
self._draw_selection_screen(stdscr)
elif self.current_screen == "monitoring":
self._draw_monitoring_screen(stdscr)
stdscr.refresh()
# Handle input
key = stdscr.getch()
if key != -1:
if not self._handle_input(key, stdscr):
break # Exit requested
except KeyboardInterrupt:
break
except curses.error:
# Curses error - likely terminal too small, just continue
pass
except Exception as e:
# Show error briefly
height, width = stdscr.getmaxyx()
error_msg = f"Error: {str(e)[: width - 10]}"
stdscr.addstr(0, 0, error_msg[: width - 1])
stdscr.refresh()
time.sleep(1)
def _draw_selection_screen(self, stdscr):
"""Draw the cgroup selection screen."""
height, width = stdscr.getmaxyx()
# Draw fancy header box
_draw_fancy_header(stdscr, "🐳 CONTAINER MONITOR", "Select a Cgroup to Monitor")
# Instructions
instructions = (
"↑↓: Navigate | ENTER: Select | w: Web Mode | q: Quit | r: Refresh"
)
_safe_addstr(
stdscr,
3,
max(0, (width - len(instructions)) // 2),
instructions,
curses.color_pair(3),
)
# Get cgroups
cgroups = self.collector.get_all_cgroups()
if not cgroups:
msg = "No cgroups found. Waiting for activity..."
_safe_addstr(
stdscr,
height // 2,
max(0, (width - len(msg)) // 2),
msg,
curses.color_pair(4),
)
return
# Sort cgroups by name
cgroups.sort(key=lambda c: c.name)
# Adjust selection bounds
if self.selected_index >= len(cgroups):
self.selected_index = len(cgroups) - 1
if self.selected_index < 0:
self.selected_index = 0
# Calculate visible range
list_height = max(1, height - 8)
if self.selected_index < self.scroll_offset:
self.scroll_offset = self.selected_index
elif self.selected_index >= self.scroll_offset + list_height:
self.scroll_offset = self.selected_index - list_height + 1
# Calculate max name length and ID width for alignment
max_name_len = min(50, max(len(cg.name) for cg in cgroups))
max_id_len = max(len(str(cg.id)) for cg in cgroups)
# Draw cgroup list with fancy borders
start_y = 5
_safe_addstr(
stdscr, start_y, 2, "" + "" * (width - 6) + "", curses.color_pair(1)
)
# Header row
header = f" {'CGROUP NAME':<{max_name_len}}{'ID':>{max_id_len}} "
_safe_addstr(stdscr, start_y + 1, 2, "", curses.color_pair(1))
_safe_addstr(
stdscr, start_y + 1, 3, header, curses.color_pair(1) | curses.A_BOLD
)
_safe_addstr(stdscr, start_y + 1, width - 3, "", curses.color_pair(1))
# Separator
_safe_addstr(
stdscr, start_y + 2, 2, "" + "" * (width - 6) + "", curses.color_pair(1)
)
for i in range(list_height):
idx = self.scroll_offset + i
y = start_y + 3 + i
if y >= height - 2:
break
_safe_addstr(stdscr, y, 2, "", curses.color_pair(1))
_safe_addstr(stdscr, y, width - 3, "", curses.color_pair(1))
if idx >= len(cgroups):
continue
cgroup = cgroups[idx]
# Truncate name if too long
display_name = (
cgroup.name
if len(cgroup.name) <= max_name_len
else cgroup.name[: max_name_len - 3] + "..."
)
if idx == self.selected_index:
# Highlight selected with proper alignment
line = f"{display_name:<{max_name_len}}{cgroup.id:>{max_id_len}} "
_safe_addstr(stdscr, y, 3, line, curses.color_pair(8) | curses.A_BOLD)
else:
line = f" {display_name:<{max_name_len}}{cgroup.id:>{max_id_len}} "
_safe_addstr(stdscr, y, 3, line, curses.color_pair(7))
# Bottom border
bottom_y = min(start_y + 3 + list_height, height - 3)
_safe_addstr(
stdscr, bottom_y, 2, "" + "" * (width - 6) + "", curses.color_pair(1)
)
# Footer
footer = f"Total: {len(cgroups)} cgroups"
if len(cgroups) > list_height:
footer += f" │ Showing {self.scroll_offset + 1}-{min(self.scroll_offset + list_height, len(cgroups))}"
_safe_addstr(
stdscr,
height - 2,
max(0, (width - len(footer)) // 2),
footer,
curses.color_pair(1),
)
def _draw_monitoring_screen(self, stdscr):
"""Draw the monitoring screen for selected cgroup."""
height, width = stdscr.getmaxyx()
if self.selected_cgroup is None:
return
# Get current stats
stats = self.collector.get_stats_for_cgroup(self.selected_cgroup)
history = self.collector.get_history(self.selected_cgroup)
# Draw fancy header
_draw_fancy_header(
stdscr, f"📊 {stats.cgroup_name[:40]}", "Live Performance Metrics"
)
# Instructions
instructions = "ESC/b: Back to List | w: Web Mode | q: Quit"
_safe_addstr(
stdscr,
3,
max(0, (width - len(instructions)) // 2),
instructions,
curses.color_pair(3),
)
# Calculate metrics for rate display
rates = _calculate_rates(history)
y = 5
# Syscall count in a fancy box
if y + 4 < height:
_draw_metric_box(
stdscr,
y,
2,
min(width - 4, 80),
"⚡ SYSTEM CALLS",
f"{stats.syscall_count:,}",
f"Rate: {rates['syscalls_per_sec']:.1f}/sec",
curses.color_pair(5),
)
y += 4
# Network I/O Section
if y + 8 < height:
_draw_section_header(stdscr, y, "🌐 NETWORK I/O", 1)
y += 1
# RX graph
rx_label = f"RX: {_format_bytes(stats.rx_bytes)}"
rx_rate = f"{_format_bytes(rates['rx_bytes_per_sec'])}/s"
rx_pkts = f"{stats.rx_packets:,} pkts ({rates['rx_pkts_per_sec']:.1f}/s)"
_draw_labeled_graph(
stdscr,
y,
2,
width - 4,
4,
rx_label,
rx_rate,
rx_pkts,
[s.rx_bytes for s in history],
curses.color_pair(2),
"Received Traffic (last 100 samples)",
)
y += 6
# TX graph
if y + 8 < height:
tx_label = f"TX: {_format_bytes(stats.tx_bytes)}"
tx_rate = f"{_format_bytes(rates['tx_bytes_per_sec'])}/s"
tx_pkts = f"{stats.tx_packets:,} pkts ({rates['tx_pkts_per_sec']:.1f}/s)"
_draw_labeled_graph(
stdscr,
y,
2,
width - 4,
4,
tx_label,
tx_rate,
tx_pkts,
[s.tx_bytes for s in history],
curses.color_pair(3),
"Transmitted Traffic (last 100 samples)",
)
y += 6
# File I/O Section
if y + 8 < height:
_draw_section_header(stdscr, y, "💾 FILE I/O", 1)
y += 1
# Read graph
read_label = f"READ: {_format_bytes(stats.read_bytes)}"
read_rate = f"{_format_bytes(rates['read_bytes_per_sec'])}/s"
read_ops = f"{stats.read_ops:,} ops ({rates['read_ops_per_sec']:.1f}/s)"
_draw_labeled_graph(
stdscr,
y,
2,
width - 4,
4,
read_label,
read_rate,
read_ops,
[s.read_bytes for s in history],
curses.color_pair(4),
"Read Operations (last 100 samples)",
)
y += 6
# Write graph
if y + 8 < height:
write_label = f"WRITE: {_format_bytes(stats.write_bytes)}"
write_rate = f"{_format_bytes(rates['write_bytes_per_sec'])}/s"
write_ops = f"{stats.write_ops:,} ops ({rates['write_ops_per_sec']:.1f}/s)"
_draw_labeled_graph(
stdscr,
y,
2,
width - 4,
4,
write_label,
write_rate,
write_ops,
[s.write_bytes for s in history],
curses.color_pair(5),
"Write Operations (last 100 samples)",
)
def _launch_web_mode(self, stdscr):
"""Launch web dashboard mode."""
height, width = stdscr.getmaxyx()
# Show transition message
stdscr.clear()
msg1 = "🌐 LAUNCHING WEB DASHBOARD"
_safe_addstr(
stdscr,
height // 2 - 2,
max(0, (width - len(msg1)) // 2),
msg1,
curses.color_pair(6) | curses.A_BOLD,
)
msg2 = "Server starting at http://localhost:8050"
_safe_addstr(
stdscr,
height // 2,
max(0, (width - len(msg2)) // 2),
msg2,
curses.color_pair(2),
)
msg3 = "Press 'q' to stop web server and return to TUI"
_safe_addstr(
stdscr,
height // 2 + 2,
max(0, (width - len(msg3)) // 2),
msg3,
curses.color_pair(3),
)
stdscr.refresh()
time.sleep(1)
try:
# Create and start web dashboard
self.web_dashboard = WebDashboard(
self.collector, selected_cgroup=self.selected_cgroup
)
# Start in background thread
self.web_thread = threading.Thread(
target=self.web_dashboard.run, daemon=True
)
self.web_thread.start()
time.sleep(2) # Give server time to start
# Wait for user to press 'q' to return
msg4 = "Web dashboard running at http://localhost:8050"
msg5 = "Press 'q' to return to TUI"
_safe_addstr(
stdscr,
height // 2 + 4,
max(0, (width - len(msg4)) // 2),
msg4,
curses.color_pair(1) | curses.A_BOLD,
)
_safe_addstr(
stdscr,
height // 2 + 5,
max(0, (width - len(msg5)) // 2),
msg5,
curses.color_pair(3) | curses.A_BOLD,
)
stdscr.refresh()
stdscr.nodelay(False) # Blocking mode
while True:
key = stdscr.getch()
if key == ord("q") or key == ord("Q"):
break
# Stop web server
if self.web_dashboard:
self.web_dashboard.stop()
except Exception as e:
error_msg = f"Error starting web dashboard: {str(e)}"
_safe_addstr(
stdscr,
height // 2 + 4,
max(0, (width - len(error_msg)) // 2),
error_msg,
curses.color_pair(4),
)
stdscr.refresh()
time.sleep(3)
# Restore TUI settings
stdscr.nodelay(True)
stdscr.timeout(100)
def _handle_input(self, key: int, stdscr) -> bool:
"""Handle keyboard input. Returns False to exit."""
if key == ord("q") or key == ord("Q"):
return False # Exit
if key == ord("w") or key == ord("W"):
# Launch web mode
self._launch_web_mode(stdscr)
return True
if self.current_screen == "selection":
if key == curses.KEY_UP:
self.selected_index = max(0, self.selected_index - 1)
elif key == curses.KEY_DOWN:
cgroups = self.collector.get_all_cgroups()
self.selected_index = min(len(cgroups) - 1, self.selected_index + 1)
elif key == ord("\n") or key == curses.KEY_ENTER or key == 10:
# Select cgroup
cgroups = self.collector.get_all_cgroups()
if cgroups and 0 <= self.selected_index < len(cgroups):
cgroups.sort(key=lambda c: c.name)
self.selected_cgroup = cgroups[self.selected_index].id
self.current_screen = "monitoring"
elif key == ord("r") or key == ord("R"):
# Force refresh cache
self.collector._cgroup_cache_time = 0
elif self.current_screen == "monitoring":
if key == 27 or key == ord("b") or key == ord("B"): # ESC or 'b'
self.current_screen = "selection"
self.selected_cgroup = None
return True # Continue running

View File

@ -1,826 +0,0 @@
"""Beautiful web dashboard for container monitoring using Plotly Dash."""
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from typing import Optional
from data_collection import ContainerDataCollector
class WebDashboard:
"""Beautiful web dashboard for container monitoring."""
def __init__(
self,
collector: ContainerDataCollector,
selected_cgroup: Optional[int] = None,
host: str = "0.0.0.0",
port: int = 8050,
):
self.collector = collector
self.selected_cgroup = selected_cgroup
self.host = host
self.port = port
# Suppress Dash dev tools and debug output
self.app = dash.Dash(
__name__,
title="pythonBPF Container Monitor",
suppress_callback_exceptions=True,
)
self._setup_layout()
self._setup_callbacks()
self._running = False
def _setup_layout(self):
"""Create the dashboard layout."""
self.app.layout = html.Div(
[
# Futuristic Header with pythonBPF branding
html.Div(
[
html.Div(
[
html.Div(
[
html.Span(
"python",
style={
"fontSize": "52px",
"fontWeight": "300",
"color": "#00ff88",
"fontFamily": "'Courier New', monospace",
"textShadow": "0 0 20px rgba(0,255,136,0.5)",
},
),
html.Span(
"BPF",
style={
"fontSize": "52px",
"fontWeight": "900",
"color": "#00d4ff",
"fontFamily": "'Courier New', monospace",
"textShadow": "0 0 20px rgba(0,212,255,0.5)",
},
),
],
style={"marginBottom": "5px"},
),
html.Div(
"CONTAINER PERFORMANCE MONITOR",
style={
"fontSize": "16px",
"letterSpacing": "8px",
"color": "#8899ff",
"fontWeight": "300",
"fontFamily": "'Courier New', monospace",
},
),
],
style={
"textAlign": "center",
},
),
html.Div(
id="cgroup-name",
style={
"textAlign": "center",
"color": "#00ff88",
"fontSize": "20px",
"marginTop": "15px",
"fontFamily": "'Courier New', monospace",
"fontWeight": "bold",
"textShadow": "0 0 10px rgba(0,255,136,0.3)",
},
),
],
style={
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 50%, #0a0e27 100%)",
"padding": "40px 20px",
"borderRadius": "0",
"marginBottom": "0",
"boxShadow": "0 10px 40px rgba(0,212,255,0.2)",
"border": "1px solid rgba(0,212,255,0.3)",
"borderTop": "3px solid #00d4ff",
"borderBottom": "3px solid #00ff88",
"position": "relative",
"overflow": "hidden",
},
),
# Cgroup selector (if no cgroup selected)
html.Div(
[
html.Label(
"SELECT CGROUP:",
style={
"fontSize": "14px",
"fontWeight": "bold",
"color": "#00d4ff",
"marginRight": "15px",
"fontFamily": "'Courier New', monospace",
"letterSpacing": "2px",
},
),
dcc.Dropdown(
id="cgroup-selector",
style={
"width": "600px",
"display": "inline-block",
"background": "#1a1f3a",
"border": "1px solid #00d4ff",
},
),
],
id="selector-container",
style={
"textAlign": "center",
"marginTop": "30px",
"marginBottom": "30px",
"padding": "20px",
"background": "rgba(26,31,58,0.5)",
"borderRadius": "10px",
"border": "1px solid rgba(0,212,255,0.2)",
"display": "block" if self.selected_cgroup is None else "none",
},
),
# Stats cards row
html.Div(
[
self._create_stat_card(
"syscall-card", "⚡ SYSCALLS", "#00ff88"
),
self._create_stat_card("network-card", "🌐 NETWORK", "#00d4ff"),
self._create_stat_card("file-card", "💾 FILE I/O", "#ff0088"),
],
style={
"display": "flex",
"justifyContent": "space-around",
"marginBottom": "30px",
"marginTop": "30px",
"gap": "25px",
"flexWrap": "wrap",
"padding": "0 20px",
},
),
# Graphs container
html.Div(
[
# Network graphs
html.Div(
[
html.Div(
[
html.Span("🌐 ", style={"fontSize": "24px"}),
html.Span(
"NETWORK",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"fontWeight": "bold",
},
),
html.Span(
" I/O",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"color": "#00d4ff",
},
),
],
style={
"color": "#ffffff",
"fontSize": "20px",
"borderBottom": "2px solid #00d4ff",
"paddingBottom": "15px",
"marginBottom": "25px",
"textShadow": "0 0 10px rgba(0,212,255,0.3)",
},
),
dcc.Graph(
id="network-graph", style={"height": "400px"}
),
],
style={
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 100%)",
"padding": "30px",
"borderRadius": "15px",
"boxShadow": "0 8px 32px rgba(0,212,255,0.15)",
"marginBottom": "30px",
"border": "1px solid rgba(0,212,255,0.2)",
},
),
# File I/O graphs
html.Div(
[
html.Div(
[
html.Span("💾 ", style={"fontSize": "24px"}),
html.Span(
"FILE",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"fontWeight": "bold",
},
),
html.Span(
" I/O",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"color": "#ff0088",
},
),
],
style={
"color": "#ffffff",
"fontSize": "20px",
"borderBottom": "2px solid #ff0088",
"paddingBottom": "15px",
"marginBottom": "25px",
"textShadow": "0 0 10px rgba(255,0,136,0.3)",
},
),
dcc.Graph(
id="file-io-graph", style={"height": "400px"}
),
],
style={
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 100%)",
"padding": "30px",
"borderRadius": "15px",
"boxShadow": "0 8px 32px rgba(255,0,136,0.15)",
"marginBottom": "30px",
"border": "1px solid rgba(255,0,136,0.2)",
},
),
# Combined time series
html.Div(
[
html.Div(
[
html.Span("📈 ", style={"fontSize": "24px"}),
html.Span(
"REAL-TIME",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"fontWeight": "bold",
},
),
html.Span(
" METRICS",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"color": "#00ff88",
},
),
],
style={
"color": "#ffffff",
"fontSize": "20px",
"borderBottom": "2px solid #00ff88",
"paddingBottom": "15px",
"marginBottom": "25px",
"textShadow": "0 0 10px rgba(0,255,136,0.3)",
},
),
dcc.Graph(
id="timeseries-graph", style={"height": "500px"}
),
],
style={
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 100%)",
"padding": "30px",
"borderRadius": "15px",
"boxShadow": "0 8px 32px rgba(0,255,136,0.15)",
"border": "1px solid rgba(0,255,136,0.2)",
},
),
],
style={"padding": "0 20px"},
),
# Footer with pythonBPF branding
html.Div(
[
html.Div(
[
html.Span(
"Powered by ",
style={"color": "#8899ff", "fontSize": "12px"},
),
html.Span(
"pythonBPF",
style={
"color": "#00d4ff",
"fontSize": "14px",
"fontWeight": "bold",
"fontFamily": "'Courier New', monospace",
},
),
html.Span(
" | eBPF Container Monitoring",
style={
"color": "#8899ff",
"fontSize": "12px",
"marginLeft": "10px",
},
),
]
)
],
style={
"textAlign": "center",
"padding": "20px",
"marginTop": "40px",
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 100%)",
"borderTop": "1px solid rgba(0,212,255,0.2)",
},
),
# Auto-update interval
dcc.Interval(id="interval-component", interval=1000, n_intervals=0),
],
style={
"padding": "0",
"fontFamily": "'Segoe UI', 'Courier New', monospace",
"background": "linear-gradient(to bottom, #050813 0%, #0a0e27 100%)",
"minHeight": "100vh",
"margin": "0",
},
)
def _create_stat_card(self, card_id: str, title: str, color: str):
"""Create a statistics card with futuristic styling."""
return html.Div(
[
html.H3(
title,
style={
"color": color,
"fontSize": "16px",
"marginBottom": "20px",
"fontWeight": "bold",
"fontFamily": "'Courier New', monospace",
"letterSpacing": "2px",
"textShadow": f"0 0 10px {color}50",
},
),
html.Div(
[
html.Div(
id=f"{card_id}-value",
style={
"fontSize": "42px",
"fontWeight": "bold",
"color": "#ffffff",
"marginBottom": "10px",
"fontFamily": "'Courier New', monospace",
"textShadow": f"0 0 20px {color}40",
},
),
html.Div(
id=f"{card_id}-rate",
style={
"fontSize": "14px",
"color": "#8899ff",
"fontFamily": "'Courier New', monospace",
},
),
]
),
],
style={
"flex": "1",
"minWidth": "280px",
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 100%)",
"padding": "30px",
"borderRadius": "15px",
"boxShadow": f"0 8px 32px {color}20",
"border": f"1px solid {color}40",
"borderLeft": f"4px solid {color}",
"transition": "transform 0.3s, box-shadow 0.3s",
"position": "relative",
"overflow": "hidden",
},
)
def _setup_callbacks(self):
"""Setup dashboard callbacks."""
@self.app.callback(
[Output("cgroup-selector", "options"), Output("cgroup-selector", "value")],
[Input("interval-component", "n_intervals")],
)
def update_cgroup_selector(n):
if self.selected_cgroup is not None:
return [], self.selected_cgroup
cgroups = self.collector.get_all_cgroups()
options = [
{"label": f"{cg.name} (ID: {cg.id})", "value": cg.id}
for cg in sorted(cgroups, key=lambda c: c.name)
]
value = options[0]["value"] if options else None
if value and self.selected_cgroup is None:
self.selected_cgroup = value
return options, self.selected_cgroup
@self.app.callback(
Output("cgroup-selector", "value", allow_duplicate=True),
[Input("cgroup-selector", "value")],
prevent_initial_call=True,
)
def select_cgroup(value):
if value:
self.selected_cgroup = value
return value
@self.app.callback(
[
Output("cgroup-name", "children"),
Output("syscall-card-value", "children"),
Output("syscall-card-rate", "children"),
Output("network-card-value", "children"),
Output("network-card-rate", "children"),
Output("file-card-value", "children"),
Output("file-card-rate", "children"),
Output("network-graph", "figure"),
Output("file-io-graph", "figure"),
Output("timeseries-graph", "figure"),
],
[Input("interval-component", "n_intervals")],
)
def update_dashboard(n):
if self.selected_cgroup is None:
empty_fig = self._create_empty_figure(
"Select a cgroup to begin monitoring"
)
return (
"SELECT A CGROUP TO START",
"0",
"",
"0 B",
"",
"0 B",
"",
empty_fig,
empty_fig,
empty_fig,
)
try:
stats = self.collector.get_stats_for_cgroup(self.selected_cgroup)
history = self.collector.get_history(self.selected_cgroup)
rates = self._calculate_rates(history)
return (
f"{stats.cgroup_name}",
f"{stats.syscall_count:,}",
f"{rates['syscalls_per_sec']:.1f} calls/sec",
f"{self._format_bytes(stats.rx_bytes + stats.tx_bytes)}",
f"{self._format_bytes(rates['rx_bytes_per_sec'])}/s ↑ {self._format_bytes(rates['tx_bytes_per_sec'])}/s",
f"{self._format_bytes(stats.read_bytes + stats.write_bytes)}",
f"R: {self._format_bytes(rates['read_bytes_per_sec'])}/s W: {self._format_bytes(rates['write_bytes_per_sec'])}/s",
self._create_network_graph(history),
self._create_file_io_graph(history),
self._create_timeseries_graph(history),
)
except Exception as e:
empty_fig = self._create_empty_figure(f"Error: {str(e)}")
return (
"ERROR",
"0",
str(e),
"0 B",
"",
"0 B",
"",
empty_fig,
empty_fig,
empty_fig,
)
def _create_empty_figure(self, message: str):
"""Create an empty figure with a message."""
fig = go.Figure()
fig.update_layout(
title=message,
template="plotly_dark",
paper_bgcolor="#0a0e27",
plot_bgcolor="#0a0e27",
font=dict(color="#8899ff", family="Courier New, monospace"),
)
return fig
def _create_network_graph(self, history):
"""Create network I/O graph with futuristic styling."""
if len(history) < 2:
return self._create_empty_figure("Collecting data...")
times = [i for i in range(len(history))]
rx_bytes = [s.rx_bytes for s in history]
tx_bytes = [s.tx_bytes for s in history]
fig = make_subplots(
rows=2,
cols=1,
subplot_titles=("RECEIVED (RX)", "TRANSMITTED (TX)"),
vertical_spacing=0.15,
)
fig.add_trace(
go.Scatter(
x=times,
y=rx_bytes,
mode="lines",
name="RX",
fill="tozeroy",
line=dict(color="#00d4ff", width=3, shape="spline"),
fillcolor="rgba(0, 212, 255, 0.2)",
),
row=1,
col=1,
)
fig.add_trace(
go.Scatter(
x=times,
y=tx_bytes,
mode="lines",
name="TX",
fill="tozeroy",
line=dict(color="#00ff88", width=3, shape="spline"),
fillcolor="rgba(0, 255, 136, 0.2)",
),
row=2,
col=1,
)
fig.update_xaxes(title_text="Time (samples)", row=2, col=1, color="#8899ff")
fig.update_yaxes(title_text="Bytes", row=1, col=1, color="#8899ff")
fig.update_yaxes(title_text="Bytes", row=2, col=1, color="#8899ff")
fig.update_layout(
height=400,
template="plotly_dark",
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="#0a0e27",
showlegend=False,
hovermode="x unified",
font=dict(family="Courier New, monospace", color="#8899ff"),
)
return fig
def _create_file_io_graph(self, history):
"""Create file I/O graph with futuristic styling."""
if len(history) < 2:
return self._create_empty_figure("Collecting data...")
times = [i for i in range(len(history))]
read_bytes = [s.read_bytes for s in history]
write_bytes = [s.write_bytes for s in history]
fig = make_subplots(
rows=2,
cols=1,
subplot_titles=("READ OPERATIONS", "WRITE OPERATIONS"),
vertical_spacing=0.15,
)
fig.add_trace(
go.Scatter(
x=times,
y=read_bytes,
mode="lines",
name="Read",
fill="tozeroy",
line=dict(color="#ff0088", width=3, shape="spline"),
fillcolor="rgba(255, 0, 136, 0.2)",
),
row=1,
col=1,
)
fig.add_trace(
go.Scatter(
x=times,
y=write_bytes,
mode="lines",
name="Write",
fill="tozeroy",
line=dict(color="#8844ff", width=3, shape="spline"),
fillcolor="rgba(136, 68, 255, 0.2)",
),
row=2,
col=1,
)
fig.update_xaxes(title_text="Time (samples)", row=2, col=1, color="#8899ff")
fig.update_yaxes(title_text="Bytes", row=1, col=1, color="#8899ff")
fig.update_yaxes(title_text="Bytes", row=2, col=1, color="#8899ff")
fig.update_layout(
height=400,
template="plotly_dark",
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="#0a0e27",
showlegend=False,
hovermode="x unified",
font=dict(family="Courier New, monospace", color="#8899ff"),
)
return fig
def _create_timeseries_graph(self, history):
"""Create combined time series graph with futuristic styling."""
if len(history) < 2:
return self._create_empty_figure("Collecting data...")
times = [i for i in range(len(history))]
fig = make_subplots(
rows=3,
cols=1,
subplot_titles=(
"SYSTEM CALLS",
"NETWORK TRAFFIC (Bytes)",
"FILE I/O (Bytes)",
),
vertical_spacing=0.1,
specs=[
[{"secondary_y": False}],
[{"secondary_y": True}],
[{"secondary_y": True}],
],
)
# Syscalls
fig.add_trace(
go.Scatter(
x=times,
y=[s.syscall_count for s in history],
mode="lines",
name="Syscalls",
line=dict(color="#00ff88", width=3, shape="spline"),
),
row=1,
col=1,
)
# Network
fig.add_trace(
go.Scatter(
x=times,
y=[s.rx_bytes for s in history],
mode="lines",
name="RX",
line=dict(color="#00d4ff", width=2, shape="spline"),
),
row=2,
col=1,
secondary_y=False,
)
fig.add_trace(
go.Scatter(
x=times,
y=[s.tx_bytes for s in history],
mode="lines",
name="TX",
line=dict(color="#00ff88", width=2, shape="spline", dash="dot"),
),
row=2,
col=1,
secondary_y=True,
)
# File I/O
fig.add_trace(
go.Scatter(
x=times,
y=[s.read_bytes for s in history],
mode="lines",
name="Read",
line=dict(color="#ff0088", width=2, shape="spline"),
),
row=3,
col=1,
secondary_y=False,
)
fig.add_trace(
go.Scatter(
x=times,
y=[s.write_bytes for s in history],
mode="lines",
name="Write",
line=dict(color="#8844ff", width=2, shape="spline", dash="dot"),
),
row=3,
col=1,
secondary_y=True,
)
fig.update_xaxes(title_text="Time (samples)", row=3, col=1, color="#8899ff")
fig.update_yaxes(title_text="Count", row=1, col=1, color="#8899ff")
fig.update_yaxes(
title_text="RX Bytes", row=2, col=1, secondary_y=False, color="#00d4ff"
)
fig.update_yaxes(
title_text="TX Bytes", row=2, col=1, secondary_y=True, color="#00ff88"
)
fig.update_yaxes(
title_text="Read Bytes", row=3, col=1, secondary_y=False, color="#ff0088"
)
fig.update_yaxes(
title_text="Write Bytes", row=3, col=1, secondary_y=True, color="#8844ff"
)
fig.update_layout(
height=500,
template="plotly_dark",
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="#0a0e27",
hovermode="x unified",
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
font=dict(color="#8899ff"),
),
font=dict(family="Courier New, monospace", color="#8899ff"),
)
return fig
def _calculate_rates(self, history):
"""Calculate rates from history."""
if len(history) < 2:
return {
"syscalls_per_sec": 0.0,
"rx_bytes_per_sec": 0.0,
"tx_bytes_per_sec": 0.0,
"read_bytes_per_sec": 0.0,
"write_bytes_per_sec": 0.0,
}
recent = history[-1]
previous = history[-2]
time_delta = recent.timestamp - previous.timestamp
if time_delta <= 0:
time_delta = 1.0
return {
"syscalls_per_sec": max(
0, (recent.syscall_count - previous.syscall_count) / time_delta
),
"rx_bytes_per_sec": max(
0, (recent.rx_bytes - previous.rx_bytes) / time_delta
),
"tx_bytes_per_sec": max(
0, (recent.tx_bytes - previous.tx_bytes) / time_delta
),
"read_bytes_per_sec": max(
0, (recent.read_bytes - previous.read_bytes) / time_delta
),
"write_bytes_per_sec": max(
0, (recent.write_bytes - previous.write_bytes) / time_delta
),
}
def _format_bytes(self, bytes_val: float) -> str:
"""Format bytes into human-readable string."""
if bytes_val < 0:
bytes_val = 0
for unit in ["B", "KB", "MB", "GB", "TB"]:
if bytes_val < 1024.0:
return f"{bytes_val:.2f} {unit}"
bytes_val /= 1024.0
return f"{bytes_val:.2f} PB"
def run(self):
"""Run the web dashboard."""
self._running = True
# Suppress Werkzeug logging
import logging
log = logging.getLogger("werkzeug")
log.setLevel(logging.ERROR)
self.app.run(debug=False, host=self.host, port=self.port, use_reloader=False)
def stop(self):
"""Stop the web dashboard."""
self._running = False

View File

@ -1,4 +1,4 @@
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe from pythonbpf import bpf, section, bpfglobal, BPF
from ctypes import c_void_p, c_int64 from ctypes import c_void_p, c_int64
# Instructions to how to run this program # Instructions to how to run this program
@ -21,6 +21,10 @@ def LICENSE() -> str:
b = BPF() b = BPF()
b.load() b.load_and_attach()
b.attach_all() if b.is_loaded() and b.is_attached():
trace_pipe() print("Successfully loaded and attached")
else:
print("Could not load successfully")
# Now cat /sys/kernel/debug/tracing/trace_pipe to see results of the execve syscall.

View File

@ -1,29 +0,0 @@
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("kretprobe/do_unlinkat")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return c_int64(0)
@bpf
@section("kprobe/do_unlinkat")
def hello_world2(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return c_int64(0)
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load()
b.attach_all()
print("running")
trace_pipe()

View File

@ -27,7 +27,7 @@ def hello(ctx: c_void_p) -> c_int32:
dataobj.pid = pid() dataobj.pid = pid()
dataobj.ts = ktime() dataobj.ts = ktime()
# dataobj.comm = strobj # dataobj.comm = strobj
print(f"clone called at {dataobj.ts} by pid{dataobj.pid}, comm {strobj}") print(f"clone called at {dataobj.ts} by pid" f"{dataobj.pid}, comm {strobj}")
events.output(dataobj) events.output(dataobj)
return c_int32(0) return c_int32(0)

View File

@ -21,17 +21,17 @@ def last() -> HashMap:
@section("tracepoint/syscalls/sys_enter_sync") @section("tracepoint/syscalls/sys_enter_sync")
def do_trace(ctx: c_void_p) -> c_int64: def do_trace(ctx: c_void_p) -> c_int64:
key = 0 key = 0
tsp = last.lookup(key) tsp = last().lookup(key)
if tsp: if tsp:
kt = ktime() kt = ktime()
delta = kt - tsp delta = kt - tsp
if delta < 1000000000: if delta < 1000000000:
time_ms = delta // 1000000 time_ms = delta // 1000000
print(f"sync called within last second, last {time_ms} ms ago") print(f"sync called within last second, last {time_ms} ms ago")
last.delete(key) last().delete(key)
else: else:
kt = ktime() kt = ktime()
last.update(key, kt) last().update(key, kt)
return c_int64(0) return c_int64(0)

203381
examples/vmlinux.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,8 @@
from pythonbpf import bpf, map, section, bpfglobal, compile, compile_to_ir from pythonbpf import bpf, map, section, bpfglobal, compile
from pythonbpf.helper import XDP_PASS from pythonbpf.helper import XDP_PASS
from pythonbpf.maps import HashMap from pythonbpf.maps import HashMap
from ctypes import c_int64, c_void_p
from ctypes import c_void_p, c_int64
# Instructions to how to run this program # Instructions to how to run this program
# 1. Install PythonBPF: pip install pythonbpf # 1. Install PythonBPF: pip install pythonbpf
@ -23,14 +23,14 @@ def count() -> HashMap:
def hello_world(ctx: c_void_p) -> c_int64: def hello_world(ctx: c_void_p) -> c_int64:
key = 0 key = 0
one = 1 one = 1
prev = count.lookup(key) prev = count().lookup(key)
if prev: if prev:
prevval = prev + 1 prevval = prev + 1
print(f"count: {prevval}") print(f"count: {prevval}")
count.update(key, prevval) count().update(key, prevval)
return XDP_PASS return XDP_PASS
else: else:
count.update(key, one) count().update(key, one)
return XDP_PASS return XDP_PASS
@ -41,5 +41,4 @@ def LICENSE() -> str:
return "GPL" return "GPL"
compile_to_ir("xdp_pass.py", "xdp_pass.ll")
compile() compile()

View File

@ -4,44 +4,22 @@ build-backend = "setuptools.build_meta"
[project] [project]
name = "pythonbpf" name = "pythonbpf"
version = "0.1.8" version = "0.1.3"
description = "Reduced Python frontend for eBPF" description = "Reduced Python frontend for eBPF"
authors = [ authors = [
{ name = "r41k0u", email="pragyanshchaturvedi18@gmail.com" }, { name = "r41k0u", email="pragyanshchaturvedi18@gmail.com" },
{ name = "varun-r-mallya", email="varunrmallya@gmail.com" } { name = "varun-r-mallya", email="varunrmallya@gmail.com" }
] ]
classifiers = [
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Operating System :: POSIX :: Linux",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: System :: Operating System Kernels :: Linux",
]
readme = "README.md" readme = "README.md"
license = {text = "Apache-2.0"} license = {text = "Apache-2.0"}
requires-python = ">=3.10" requires-python = ">=3.8"
dependencies = [ dependencies = [
"llvmlite>=0.45", "llvmlite",
"astpretty", "astpretty",
"pylibbpf" "pylibbpf"
] ]
[project.optional-dependencies]
docs = [
"sphinx>=7.0",
"myst-parser>=2.0",
"sphinx-rtd-theme>=2.0",
"sphinx-copybutton",
]
[tool.setuptools.packages.find] [tool.setuptools.packages.find]
where = ["."] where = ["."]
include = ["pythonbpf*"] include = ["pythonbpf*"]

View File

@ -1,6 +1,5 @@
from .decorators import bpf, map, section, bpfglobal, struct from .decorators import bpf, map, section, bpfglobal, struct
from .codegen import compile_to_ir, compile, BPF from .codegen import compile_to_ir, compile, BPF
from .utils import trace_pipe, trace_fields
__all__ = [ __all__ = [
"bpf", "bpf",
@ -11,6 +10,4 @@ __all__ = [
"compile_to_ir", "compile_to_ir",
"compile", "compile",
"BPF", "BPF",
"trace_pipe",
"trace_fields",
] ]

View File

@ -1,474 +0,0 @@
import ast
import logging
import ctypes
from llvmlite import ir
from .local_symbol import LocalSymbol
from pythonbpf.helper import HelperHandlerRegistry
from pythonbpf.vmlinux_parser.dependency_node import Field
from .expr import VmlinuxHandlerRegistry
from pythonbpf.type_deducer import ctypes_to_ir
from pythonbpf.maps import BPFMapType
logger = logging.getLogger(__name__)
def create_targets_and_rvals(stmt):
"""Create lists of targets and right-hand values from an assignment statement."""
if isinstance(stmt.targets[0], ast.Tuple):
if not isinstance(stmt.value, ast.Tuple):
logger.warning("Mismatched multi-target assignment, skipping allocation")
return [], []
targets, rvals = stmt.targets[0].elts, stmt.value.elts
if len(targets) != len(rvals):
logger.warning("length of LHS != length of RHS, skipping allocation")
return [], []
return targets, rvals
return stmt.targets, [stmt.value]
def handle_assign_allocation(
builder, stmt, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Handle memory allocation for assignment statements."""
logger.info(f"Handling assignment for allocation: {ast.dump(stmt)}")
# NOTE: Support multi-target assignments (e.g.: a, b = 1, 2)
targets, rvals = create_targets_and_rvals(stmt)
for target, rval in zip(targets, rvals):
# Skip non-name targets (e.g., struct field assignments)
if isinstance(target, ast.Attribute):
logger.debug(
f"Struct field assignment to {target.attr}, no allocation needed"
)
continue
if not isinstance(target, ast.Name):
logger.warning(
f"Unsupported assignment target type: {type(target).__name__}"
)
continue
var_name = target.id
# Skip if already allocated
if var_name in local_sym_tab:
logger.debug(f"Variable {var_name} already allocated, skipping")
continue
# Determine type and allocate based on rval
if isinstance(rval, ast.Call):
_allocate_for_call(
builder, var_name, rval, local_sym_tab, map_sym_tab, structs_sym_tab
)
elif isinstance(rval, ast.Constant):
_allocate_for_constant(builder, var_name, rval, local_sym_tab)
elif isinstance(rval, ast.BinOp):
_allocate_for_binop(builder, var_name, local_sym_tab)
elif isinstance(rval, ast.Name):
# Variable-to-variable assignment (b = a)
_allocate_for_name(builder, var_name, rval, local_sym_tab)
elif isinstance(rval, ast.Attribute):
# Struct field-to-variable assignment (a = dat.fld)
_allocate_for_attribute(
builder, var_name, rval, local_sym_tab, structs_sym_tab
)
else:
logger.warning(
f"Unsupported assignment value type for {var_name}: {type(rval).__name__}"
)
def _allocate_for_call(
builder, var_name, rval, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Allocate memory for variable assigned from a call."""
if isinstance(rval.func, ast.Name):
call_type = rval.func.id
# C type constructors
if call_type in ("c_int32", "c_int64", "c_uint32", "c_uint64", "c_void_p"):
ir_type = ctypes_to_ir(call_type)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} as {call_type}")
# Helper functions
elif HelperHandlerRegistry.has_handler(call_type):
ir_type = ir.IntType(64) # Assume i64 return type
var = builder.alloca(ir_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} for helper {call_type}")
# Deref function
elif call_type == "deref":
ir_type = ir.IntType(64) # Assume i64 return type
var = builder.alloca(ir_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} for deref")
# Struct constructors
elif call_type in structs_sym_tab:
struct_info = structs_sym_tab[call_type]
if len(rval.args) == 0:
# Zero-arg constructor: allocate the struct itself
var = builder.alloca(struct_info.ir_type, name=var_name)
local_sym_tab[var_name] = LocalSymbol(
var, struct_info.ir_type, call_type
)
logger.info(f"Pre-allocated {var_name} for struct {call_type}")
else:
# Pointer cast: allocate as pointer to struct
ptr_type = ir.PointerType(struct_info.ir_type)
var = builder.alloca(ptr_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ptr_type, call_type)
logger.info(
f"Pre-allocated {var_name} for struct pointer cast to {call_type}"
)
elif VmlinuxHandlerRegistry.is_vmlinux_struct(call_type):
# When calling struct_name(pointer), we're doing a cast, not construction
# So we allocate as a pointer (i64) not as the actual struct
var = builder.alloca(ir.IntType(64), name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(
var, ir.IntType(64), VmlinuxHandlerRegistry.get_struct_type(call_type)
)
logger.info(
f"Pre-allocated {var_name} for vmlinux struct pointer cast to {call_type}"
)
else:
logger.warning(f"Unknown call type for allocation: {call_type}")
elif isinstance(rval.func, ast.Attribute):
# Map method calls - need double allocation for ptr handling
_allocate_for_map_method(
builder, var_name, rval, local_sym_tab, map_sym_tab, structs_sym_tab
)
else:
logger.warning(f"Unsupported call function type for {var_name}")
def _allocate_for_map_method(
builder, var_name, rval, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Allocate memory for variable assigned from map method (double alloc)."""
map_name = rval.func.value.id
method_name = rval.func.attr
# NOTE: We will have to special case HashMap.lookup which returns a pointer to value type
# The value type can be a struct as well, so we need to handle that properly
# This special casing is not ideal, as over time other map methods may need similar handling
# But for now, we will just handle lookup specifically
if map_name not in map_sym_tab:
logger.error(f"Map '{map_name}' not found for allocation")
return
if method_name != "lookup":
# Fallback allocation for other map methods
_allocate_for_map_method_fallback(builder, var_name, local_sym_tab)
return
map_params = map_sym_tab[map_name].params
if map_params["type"] != BPFMapType.HASH:
logger.warning(
"Map method lookup used on non-hash map, using fallback allocation"
)
_allocate_for_map_method_fallback(builder, var_name, local_sym_tab)
return
value_type = map_params["value"]
# Determine IR type for value
if isinstance(value_type, str) and value_type in structs_sym_tab:
struct_info = structs_sym_tab[value_type]
value_ir_type = struct_info.ir_type
else:
value_ir_type = ctypes_to_ir(value_type)
if value_ir_type is None:
logger.warning(
f"Could not determine IR type for map value '{value_type}', using fallback allocation"
)
_allocate_for_map_method_fallback(builder, var_name, local_sym_tab)
return
# Main variable (pointer to pointer)
ir_type = ir.PointerType(ir.IntType(64))
var = builder.alloca(ir_type, name=var_name)
local_sym_tab[var_name] = LocalSymbol(var, ir_type, value_type)
# Temporary variable for computed values
tmp_ir_type = value_ir_type
var_tmp = builder.alloca(tmp_ir_type, name=f"{var_name}_tmp")
local_sym_tab[f"{var_name}_tmp"] = LocalSymbol(var_tmp, tmp_ir_type)
logger.info(
f"Pre-allocated {var_name} and {var_name}_tmp for map method lookup of type {value_ir_type}"
)
def _allocate_for_map_method_fallback(builder, var_name, local_sym_tab):
"""Fallback allocation for map method variable (i64* and i64**)."""
# Main variable (pointer to pointer)
ir_type = ir.PointerType(ir.IntType(64))
var = builder.alloca(ir_type, name=var_name)
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
# Temporary variable for computed values
tmp_ir_type = ir.IntType(64)
var_tmp = builder.alloca(tmp_ir_type, name=f"{var_name}_tmp")
local_sym_tab[f"{var_name}_tmp"] = LocalSymbol(var_tmp, tmp_ir_type)
logger.info(
f"Pre-allocated {var_name} and {var_name}_tmp for map method (fallback)"
)
def _allocate_for_constant(builder, var_name, rval, local_sym_tab):
"""Allocate memory for variable assigned from a constant."""
if isinstance(rval.value, bool):
ir_type = ir.IntType(1)
var = builder.alloca(ir_type, name=var_name)
var.align = 1
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} as bool")
elif isinstance(rval.value, int):
ir_type = ir.IntType(64)
var = builder.alloca(ir_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} as i64")
elif isinstance(rval.value, str):
ir_type = ir.PointerType(ir.IntType(8))
var = builder.alloca(ir_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} as string")
else:
logger.warning(
f"Unsupported constant type for {var_name}: {type(rval.value).__name__}"
)
def _allocate_for_binop(builder, var_name, local_sym_tab):
"""Allocate memory for variable assigned from a binary operation."""
ir_type = ir.IntType(64) # Assume i64 result
var = builder.alloca(ir_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} for binop result")
def _get_type_name(ir_type):
"""Get a string representation of an IR type."""
if isinstance(ir_type, ir.IntType):
return f"i{ir_type.width}"
elif isinstance(ir_type, ir.PointerType):
return "ptr"
elif isinstance(ir_type, ir.ArrayType):
return f"[{ir_type.count}x{_get_type_name(ir_type.element)}]"
else:
return str(ir_type).replace(" ", "")
def allocate_temp_pool(builder, max_temps, local_sym_tab):
"""Allocate the temporary scratch space pool for helper arguments."""
if not max_temps:
logger.info("No temp pool allocation needed")
return
for tmp_type, cnt in max_temps.items():
type_name = _get_type_name(tmp_type)
logger.info(f"Allocating temp pool of {cnt} variables of type {type_name}")
for i in range(cnt):
temp_name = f"__helper_temp_{type_name}_{i}"
temp_var = builder.alloca(tmp_type, name=temp_name)
temp_var.align = _get_alignment(tmp_type)
local_sym_tab[temp_name] = LocalSymbol(temp_var, tmp_type)
logger.debug(f"Allocated temp variable: {temp_name}")
def _allocate_for_name(builder, var_name, rval, local_sym_tab):
"""Allocate memory for variable-to-variable assignment (b = a)."""
source_var = rval.id
if source_var not in local_sym_tab:
logger.error(f"Source variable '{source_var}' not found in symbol table")
return
# Get type and metadata from source variable
source_symbol = local_sym_tab[source_var]
# Allocate with same type and alignment
var = _allocate_with_type(builder, var_name, source_symbol.ir_type)
local_sym_tab[var_name] = LocalSymbol(
var, source_symbol.ir_type, source_symbol.metadata
)
logger.info(
f"Pre-allocated {var_name} from {source_var} with type {source_symbol.ir_type}"
)
def _allocate_for_attribute(builder, var_name, rval, local_sym_tab, structs_sym_tab):
"""Allocate memory for struct field-to-variable assignment (a = dat.fld)."""
if not isinstance(rval.value, ast.Name):
logger.warning(f"Complex attribute access not supported for {var_name}")
return
struct_var = rval.value.id
field_name = rval.attr
# Validate struct and field
if struct_var not in local_sym_tab:
logger.error(f"Struct variable '{struct_var}' not found")
return
struct_type: type = local_sym_tab[struct_var].metadata
if not struct_type or struct_type not in structs_sym_tab:
if VmlinuxHandlerRegistry.is_vmlinux_struct(struct_type.__name__):
# Handle vmlinux struct field access
vmlinux_struct_name = struct_type.__name__
if not VmlinuxHandlerRegistry.has_field(vmlinux_struct_name, field_name):
logger.error(
f"Field '{field_name}' not found in vmlinux struct '{vmlinux_struct_name}'"
)
return
field_type: tuple[ir.GlobalVariable, Field] = (
VmlinuxHandlerRegistry.get_field_type(vmlinux_struct_name, field_name)
)
field_ir, field = field_type
# Determine the actual IR type based on the field's type
actual_ir_type = None
# Check if it's a ctypes primitive
if field.type.__module__ == ctypes.__name__:
try:
field_size_bytes = ctypes.sizeof(field.type)
field_size_bits = field_size_bytes * 8
if field_size_bits in [8, 16, 32, 64]:
# Special case: struct_xdp_md i32 fields should allocate as i64
# because load_ctx_field will zero-extend them to i64
if (
vmlinux_struct_name == "struct_xdp_md"
and field_size_bits == 32
):
actual_ir_type = ir.IntType(64)
logger.info(
f"Allocating {var_name} as i64 for i32 field from struct_xdp_md.{field_name} "
"(will be zero-extended during load)"
)
else:
actual_ir_type = ir.IntType(field_size_bits)
else:
logger.warning(
f"Unusual field size {field_size_bits} bits for {field_name}"
)
actual_ir_type = ir.IntType(64)
except Exception as e:
logger.warning(
f"Could not determine size for ctypes field {field_name}: {e}"
)
actual_ir_type = ir.IntType(64)
field_size_bits = 64
# Check if it's a nested vmlinux struct or complex type
elif field.type.__module__ == "vmlinux":
# For pointers to structs, use pointer type (64-bit)
if field.ctype_complex_type is not None and issubclass(
field.ctype_complex_type, ctypes._Pointer
):
actual_ir_type = ir.IntType(64) # Pointer is always 64-bit
field_size_bits = 64
# For embedded structs, this is more complex - might need different handling
else:
logger.warning(
f"Field {field_name} is a nested vmlinux struct, using i64 for now"
)
actual_ir_type = ir.IntType(64)
field_size_bits = 64
else:
logger.warning(
f"Unknown field type module {field.type.__module__} for {field_name}"
)
actual_ir_type = ir.IntType(64)
field_size_bits = 64
# Pre-allocate the tmp storage used by load_struct_field (so we don't alloca inside handler)
tmp_name = f"{struct_var}_{field_name}_tmp"
tmp_ir_type = ir.IntType(field_size_bits)
tmp_var = builder.alloca(tmp_ir_type, name=tmp_name)
tmp_var.align = tmp_ir_type.width // 8
local_sym_tab[tmp_name] = LocalSymbol(tmp_var, tmp_ir_type)
logger.info(
f"Pre-allocated temp {tmp_name} (i{field_size_bits}) for vmlinux field read {vmlinux_struct_name}.{field_name}"
)
# Allocate with the actual IR type for the destination var
var = _allocate_with_type(builder, var_name, actual_ir_type)
local_sym_tab[var_name] = LocalSymbol(var, actual_ir_type, field)
logger.info(
f"Pre-allocated {var_name} as {actual_ir_type} from vmlinux struct {vmlinux_struct_name}.{field_name}"
)
return
else:
logger.error(f"Struct type '{struct_type}' not found")
return
struct_info = structs_sym_tab[struct_type]
if field_name not in struct_info.fields:
logger.error(f"Field '{field_name}' not found in struct '{struct_type}'")
return
# Get field type
field_type = struct_info.field_type(field_name)
# Special case: char array -> allocate as i8* pointer instead
if (
isinstance(field_type, ir.ArrayType)
and isinstance(field_type.element, ir.IntType)
and field_type.element.width == 8
):
alloc_type = ir.PointerType(ir.IntType(8))
logger.info(f"Allocating {var_name} as i8* (pointer to char array)")
else:
alloc_type = field_type
var = _allocate_with_type(builder, var_name, alloc_type)
local_sym_tab[var_name] = LocalSymbol(var, alloc_type)
logger.info(
f"Pre-allocated {var_name} from {struct_var}.{field_name} with type {alloc_type}"
)
def _allocate_with_type(builder, var_name, ir_type):
"""Allocate variable with appropriate alignment for type."""
var = builder.alloca(ir_type, name=var_name)
var.align = _get_alignment(ir_type)
return var
def _get_alignment(ir_type):
"""Get appropriate alignment for IR type."""
if isinstance(ir_type, ir.IntType):
return ir_type.width // 8
elif isinstance(ir_type, ir.ArrayType) and isinstance(ir_type.element, ir.IntType):
return ir_type.element.width // 8
else:
return 8 # Default: pointer size

View File

@ -1,293 +0,0 @@
import ast
import logging
from inspect import isclass
from llvmlite import ir
from pythonbpf.expr import eval_expr
from pythonbpf.helper import emit_probe_read_kernel_str_call
from pythonbpf.type_deducer import ctypes_to_ir
from pythonbpf.vmlinux_parser.dependency_node import Field
logger = logging.getLogger(__name__)
def handle_struct_field_assignment(
func, module, builder, target, rval, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Handle struct field assignment (obj.field = value)."""
var_name = target.value.id
field_name = target.attr
if var_name not in local_sym_tab:
logger.error(f"Variable '{var_name}' not found in symbol table")
return
struct_type = local_sym_tab[var_name].metadata
struct_info = structs_sym_tab[struct_type]
if field_name not in struct_info.fields:
logger.error(f"Field '{field_name}' not found in struct '{struct_type}'")
return
# Get field pointer and evaluate value
field_ptr = struct_info.gep(builder, local_sym_tab[var_name].var, field_name)
field_type = struct_info.field_type(field_name)
val_result = eval_expr(
func, module, builder, rval, local_sym_tab, map_sym_tab, structs_sym_tab
)
if val_result is None:
logger.error(f"Failed to evaluate value for {var_name}.{field_name}")
return
val, val_type = val_result
# Special case: i8* string to [N x i8] char array
if _is_char_array(field_type) and _is_i8_ptr(val_type):
_copy_string_to_char_array(
func,
module,
builder,
val,
field_ptr,
field_type,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
logger.info(f"Copied string to char array {var_name}.{field_name}")
return
# Regular assignment
builder.store(val, field_ptr)
logger.info(f"Assigned to struct field {var_name}.{field_name}")
def _copy_string_to_char_array(
func,
module,
builder,
src_ptr,
dst_ptr,
array_type,
local_sym_tab,
map_sym_tab,
struct_sym_tab,
):
"""Copy string (i8*) to char array ([N x i8]) using bpf_probe_read_kernel_str"""
array_size = array_type.count
# Get pointer to first element: [N x i8]* -> i8*
dst_i8_ptr = builder.gep(
dst_ptr,
[ir.Constant(ir.IntType(32), 0), ir.Constant(ir.IntType(32), 0)],
inbounds=True,
)
# Use the shared emitter function
emit_probe_read_kernel_str_call(builder, dst_i8_ptr, array_size, src_ptr)
def _is_char_array(ir_type):
"""Check if type is [N x i8]."""
return (
isinstance(ir_type, ir.ArrayType)
and isinstance(ir_type.element, ir.IntType)
and ir_type.element.width == 8
)
def _is_i8_ptr(ir_type):
"""Check if type is i8*."""
return (
isinstance(ir_type, ir.PointerType)
and isinstance(ir_type.pointee, ir.IntType)
and ir_type.pointee.width == 8
)
def handle_variable_assignment(
func, module, builder, var_name, rval, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Handle single named variable assignment."""
if var_name not in local_sym_tab:
logger.error(f"Variable {var_name} not declared.")
return False
var_ptr = local_sym_tab[var_name].var
var_type = local_sym_tab[var_name].ir_type
# NOTE: Special case for struct initialization
if isinstance(rval, ast.Call) and isinstance(rval.func, ast.Name):
struct_name = rval.func.id
if struct_name in structs_sym_tab and len(rval.args) == 0:
struct_info = structs_sym_tab[struct_name]
ir_struct = struct_info.ir_type
builder.store(ir.Constant(ir_struct, None), var_ptr)
logger.info(f"Initialized struct {struct_name} for variable {var_name}")
return True
# Special case: struct field char array -> pointer
# Handle this before eval_expr to get the pointer, not the value
if isinstance(rval, ast.Attribute) and isinstance(rval.value, ast.Name):
converted_val = _try_convert_char_array_to_ptr(
rval, var_type, builder, local_sym_tab, structs_sym_tab
)
if converted_val is not None:
builder.store(converted_val, var_ptr)
logger.info(f"Assigned char array pointer to {var_name}")
return True
val_result = eval_expr(
func, module, builder, rval, local_sym_tab, map_sym_tab, structs_sym_tab
)
if val_result is None:
logger.error(f"Failed to evaluate value for {var_name}")
return False
val, val_type = val_result
logger.info(
f"Evaluated value for {var_name}: {val} of type {val_type}, expected {var_type}"
)
if val_type != var_type:
# Handle vmlinux struct pointers - they're represented as Python classes but are i64 pointers
if isclass(val_type) and (val_type.__module__ == "vmlinux"):
logger.info("Handling vmlinux struct pointer assignment")
# vmlinux struct pointers: val is a pointer, need to convert to i64
if isinstance(var_type, ir.IntType) and var_type.width == 64:
# Convert pointer to i64 using ptrtoint
if isinstance(val.type, ir.PointerType):
val = builder.ptrtoint(val, ir.IntType(64))
logger.info(
"Converted vmlinux struct pointer to i64 using ptrtoint"
)
builder.store(val, var_ptr)
logger.info(f"Assigned vmlinux struct pointer to {var_name} (i64)")
return True
else:
logger.error(
f"Type mismatch: vmlinux struct pointer requires i64, got {var_type}"
)
return False
# Handle user-defined struct pointer casts
# val_type is a string (struct name), var_type is a pointer to the struct
if isinstance(val_type, str) and val_type in structs_sym_tab:
struct_info = structs_sym_tab[val_type]
expected_ptr_type = ir.PointerType(struct_info.ir_type)
# Check if var_type matches the expected pointer type
if isinstance(var_type, ir.PointerType) and var_type == expected_ptr_type:
# val is already the correct pointer type from inttoptr/bitcast
builder.store(val, var_ptr)
logger.info(f"Assigned user-defined struct pointer cast to {var_name}")
return True
else:
logger.error(
f"Type mismatch: user-defined struct pointer cast requires pointer type, got {var_type}"
)
return False
if isinstance(val_type, Field):
logger.info("Handling assignment to struct field")
# Special handling for struct_xdp_md i32 fields that are zero-extended to i64
# The load_ctx_field already extended them, so val is i64 but val_type.type shows c_uint
if (
hasattr(val_type, "type")
and val_type.type.__name__ == "c_uint"
and isinstance(var_type, ir.IntType)
and var_type.width == 64
):
# This is the struct_xdp_md case - value is already i64
builder.store(val, var_ptr)
logger.info(
f"Assigned zero-extended struct_xdp_md i32 field to {var_name} (i64)"
)
return True
# TODO: handling only ctype struct fields for now. Handle other stuff too later.
elif var_type == ctypes_to_ir(val_type.type.__name__):
builder.store(val, var_ptr)
logger.info(f"Assigned ctype struct field to {var_name}")
return True
else:
logger.error(
f"Failed to assign ctype struct field to {var_name}: {val_type} != {var_type}"
)
return False
elif isinstance(val_type, ir.IntType) and isinstance(var_type, ir.IntType):
# Allow implicit int widening
if val_type.width < var_type.width:
val = builder.sext(val, var_type)
logger.info(f"Implicitly widened int for variable {var_name}")
elif val_type.width > var_type.width:
val = builder.trunc(val, var_type)
logger.info(f"Implicitly truncated int for variable {var_name}")
elif isinstance(val_type, ir.IntType) and isinstance(var_type, ir.PointerType):
# NOTE: This is assignment to a PTR_TO_MAP_VALUE_OR_NULL
logger.info(
f"Creating temporary variable for pointer assignment to {var_name}"
)
var_ptr_tmp = local_sym_tab[f"{var_name}_tmp"].var
builder.store(val, var_ptr_tmp)
val = var_ptr_tmp
else:
logger.error(
f"Type mismatch for variable {var_name}: {val_type} vs {var_type}"
)
return False
builder.store(val, var_ptr)
logger.info(f"Assigned value to variable {var_name}")
return True
def _try_convert_char_array_to_ptr(
rval, var_type, builder, local_sym_tab, structs_sym_tab
):
"""Try to convert char array field to i8* pointer"""
# Only convert if target is i8*
if not (
isinstance(var_type, ir.PointerType)
and isinstance(var_type.pointee, ir.IntType)
and var_type.pointee.width == 8
):
return None
struct_var = rval.value.id
field_name = rval.attr
# Validate struct
if struct_var not in local_sym_tab:
return None
struct_type = local_sym_tab[struct_var].metadata
if not struct_type or struct_type not in structs_sym_tab:
return None
struct_info = structs_sym_tab[struct_type]
if field_name not in struct_info.fields:
return None
field_type = struct_info.field_type(field_name)
# Check if it's a char array
if not (
isinstance(field_type, ir.ArrayType)
and isinstance(field_type.element, ir.IntType)
and field_type.element.width == 8
):
return None
# Get pointer to struct field
struct_ptr = local_sym_tab[struct_var].var
field_ptr = struct_info.gep(builder, struct_ptr, field_name)
# GEP to first element: [N x i8]* -> i8*
return builder.gep(
field_ptr,
[ir.Constant(ir.IntType(32), 0), ir.Constant(ir.IntType(32), 0)],
inbounds=True,
)

71
pythonbpf/binary_ops.py Normal file
View File

@ -0,0 +1,71 @@
import ast
from llvmlite import ir
def recursive_dereferencer(var, builder):
"""dereference until primitive type comes out"""
if var.type == ir.PointerType(ir.PointerType(ir.IntType(64))):
a = builder.load(var)
return recursive_dereferencer(a, builder)
elif var.type == ir.PointerType(ir.IntType(64)):
a = builder.load(var)
return recursive_dereferencer(a, builder)
elif var.type == ir.IntType(64):
return var
else:
raise TypeError(f"Unsupported type for dereferencing: {var.type}")
def handle_binary_op(rval, module, builder, var_name, local_sym_tab, map_sym_tab, func):
print(module)
left = rval.left
right = rval.right
op = rval.op
# Handle left operand
if isinstance(left, ast.Name):
if left.id in local_sym_tab:
left = recursive_dereferencer(local_sym_tab[left.id].var, builder)
else:
raise SyntaxError(f"Undefined variable: {left.id}")
elif isinstance(left, ast.Constant):
left = ir.Constant(ir.IntType(64), left.value)
else:
raise SyntaxError("Unsupported left operand type")
if isinstance(right, ast.Name):
if right.id in local_sym_tab:
right = recursive_dereferencer(local_sym_tab[right.id].var, builder)
else:
raise SyntaxError(f"Undefined variable: {right.id}")
elif isinstance(right, ast.Constant):
right = ir.Constant(ir.IntType(64), right.value)
else:
raise SyntaxError("Unsupported right operand type")
print(f"left is {left}, right is {right}, op is {op}")
if isinstance(op, ast.Add):
builder.store(builder.add(left, right), local_sym_tab[var_name].var)
elif isinstance(op, ast.Sub):
builder.store(builder.sub(left, right), local_sym_tab[var_name].var)
elif isinstance(op, ast.Mult):
builder.store(builder.mul(left, right), local_sym_tab[var_name].var)
elif isinstance(op, ast.Div):
builder.store(builder.sdiv(left, right), local_sym_tab[var_name].var)
elif isinstance(op, ast.Mod):
builder.store(builder.srem(left, right), local_sym_tab[var_name].var)
elif isinstance(op, ast.LShift):
builder.store(builder.shl(left, right), local_sym_tab[var_name].var)
elif isinstance(op, ast.RShift):
builder.store(builder.lshr(left, right), local_sym_tab[var_name].var)
elif isinstance(op, ast.BitOr):
builder.store(builder.or_(left, right), local_sym_tab[var_name].var)
elif isinstance(op, ast.BitXor):
builder.store(builder.xor(left, right), local_sym_tab[var_name].var)
elif isinstance(op, ast.BitAnd):
builder.store(builder.and_(left, right), local_sym_tab[var_name].var)
elif isinstance(op, ast.FloorDiv):
builder.store(builder.udiv(left, right), local_sym_tab[var_name].var)
else:
raise SyntaxError("Unsupported binary operation")

View File

@ -1,58 +1,19 @@
import ast import ast
from llvmlite import ir from llvmlite import ir
from .license_pass import license_processing from .license_pass import license_processing
from .functions import func_proc from .functions_pass import func_proc
from .maps import maps_proc from .maps import maps_proc
from .structs import structs_proc from .structs import structs_proc
from .vmlinux_parser import vmlinux_proc from .globals_pass import globals_processing
from pythonbpf.vmlinux_parser.vmlinux_exports_handler import VmlinuxHandler from .debuginfo import DW_LANG_C11, DwarfBehaviorEnum
from .expr import VmlinuxHandlerRegistry
from .globals_pass import (
globals_list_creation,
globals_processing,
populate_global_symbol_table,
)
from .debuginfo import DW_LANG_C11, DwarfBehaviorEnum, DebugInfoGenerator
import os import os
import subprocess import subprocess
import inspect import inspect
from pathlib import Path from pathlib import Path
from pylibbpf import BpfObject from pylibbpf import BpfProgram
import tempfile import tempfile
from logging import Logger
import logging
import re
logger: Logger = logging.getLogger(__name__) VERSION = "v0.1.3"
VERSION = "v0.1.8"
def finalize_module(original_str):
"""After all IR generation is complete, we monkey patch btf_ama attribute"""
# Create a string with applied transformation of btf_ama attribute addition to BTF struct field accesses.
pattern = r'(@"llvm\.[^"]+:[^"]*" = external global i64, !llvm\.preserve\.access\.index ![0-9]+)'
replacement = r'\1 "btf_ama"'
return re.sub(pattern, replacement, original_str)
def bpf_passthrough_gen(module):
i32_ty = ir.IntType(32)
ptr_ty = ir.PointerType(ir.IntType(8))
fnty = ir.FunctionType(ptr_ty, [i32_ty, ptr_ty])
# Declare the intrinsic
passthrough = ir.Function(module, fnty, "llvm.bpf.passthrough.p0.p0")
# Set function attributes
# TODO: the ones commented are supposed to be there but cannot be added due to llvmlite limitations at the moment
# passthrough.attributes.add("nofree")
# passthrough.attributes.add("nosync")
passthrough.attributes.add("nounwind")
# passthrough.attributes.add("memory(none)")
return passthrough
def find_bpf_chunks(tree): def find_bpf_chunks(tree):
@ -69,34 +30,21 @@ def find_bpf_chunks(tree):
def processor(source_code, filename, module): def processor(source_code, filename, module):
tree = ast.parse(source_code, filename) tree = ast.parse(source_code, filename)
logger.debug(ast.dump(tree, indent=4)) print(ast.dump(tree, indent=4))
bpf_chunks = find_bpf_chunks(tree) bpf_chunks = find_bpf_chunks(tree)
for func_node in bpf_chunks: for func_node in bpf_chunks:
logger.info(f"Found BPF function/struct: {func_node.name}") print(f"Found BPF function/struct: {func_node.name}")
bpf_passthrough_gen(module)
vmlinux_symtab = vmlinux_proc(tree, module)
if vmlinux_symtab:
handler = VmlinuxHandler.initialize(vmlinux_symtab)
VmlinuxHandlerRegistry.set_handler(handler)
populate_global_symbol_table(tree, module)
license_processing(tree, module)
globals_processing(tree, module)
structs_sym_tab = structs_proc(tree, module, bpf_chunks) structs_sym_tab = structs_proc(tree, module, bpf_chunks)
map_sym_tab = maps_proc(tree, module, bpf_chunks, structs_sym_tab) map_sym_tab = maps_proc(tree, module, bpf_chunks)
func_proc(tree, module, bpf_chunks, map_sym_tab, structs_sym_tab) func_proc(tree, module, bpf_chunks, map_sym_tab, structs_sym_tab)
globals_list_creation(tree, module) license_processing(tree, module)
return structs_sym_tab, map_sym_tab globals_processing(tree, module)
def compile_to_ir(filename: str, output: str, loglevel=logging.INFO): def compile_to_ir(filename: str, output: str):
logging.basicConfig(
level=loglevel, format="%(asctime)s [%(levelname)s] %(name)s: %(message)s"
)
with open(filename) as f: with open(filename) as f:
source = f.read() source = f.read()
@ -105,18 +53,34 @@ def compile_to_ir(filename: str, output: str, loglevel=logging.INFO):
module.triple = "bpf" module.triple = "bpf"
if not hasattr(module, "_debug_compile_unit"): if not hasattr(module, "_debug_compile_unit"):
debug_generator = DebugInfoGenerator(module) module._file_metadata = module.add_debug_info(
debug_generator.generate_file_metadata(filename, os.path.dirname(filename)) "DIFile",
debug_generator.generate_debug_cu( { # type: ignore
DW_LANG_C11, "filename": filename,
f"PythonBPF {VERSION}", "directory": os.path.dirname(filename),
True, # TODO: This is probably not true },
# TODO: add a global field here that keeps track of all the globals. Works without it, but I think it might
# be required for kprobes.
True,
) )
structs_sym_tab, maps_sym_tab = processor(source, filename, module) module._debug_compile_unit = module.add_debug_info(
"DICompileUnit",
{ # type: ignore
"language": DW_LANG_C11,
"file": module._file_metadata, # type: ignore
"producer": f"PythonBPF {VERSION}",
"isOptimized": True, # TODO: This is probably not true
# TODO: add a global field here that keeps track of all the globals. Works without it, but I think it might
# be required for kprobes.
"runtimeVersion": 0,
"emissionKind": 1,
"splitDebugInlining": False,
"nameTableKind": 0,
},
is_distinct=True,
)
module.add_named_metadata("llvm.dbg.cu", module._debug_compile_unit) # type: ignore
processor(source, filename, module)
wchar_size = module.add_metadata( wchar_size = module.add_metadata(
[ [
@ -157,45 +121,16 @@ def compile_to_ir(filename: str, output: str, loglevel=logging.INFO):
module.add_named_metadata("llvm.ident", [f"PythonBPF {VERSION}"]) module.add_named_metadata("llvm.ident", [f"PythonBPF {VERSION}"])
module_string: str = finalize_module(str(module)) print(f"IR written to {output}")
logger.info(f"IR written to {output}")
with open(output, "w") as f: with open(output, "w") as f:
f.write(f'source_filename = "{filename}"\n') f.write(f'source_filename = "{filename}"\n')
f.write(module_string) f.write(str(module))
f.write("\n") f.write("\n")
return output, structs_sym_tab, maps_sym_tab return output
def _run_llc(ll_file, obj_file): def compile() -> bool:
"""Compile LLVM IR to BPF object file using llc."""
logger.info(f"Compiling IR to object: {ll_file} -> {obj_file}")
result = subprocess.run(
[
"llc",
"-march=bpf",
"-filetype=obj",
"-O2",
str(ll_file),
"-o",
str(obj_file),
],
check=True,
capture_output=True,
text=True,
)
if result.returncode == 0:
logger.info(f"Object file written to {obj_file}")
return True
else:
logger.error(f"llc compilation failed: {result.stderr}")
return False
def compile(loglevel=logging.WARNING) -> bool:
# Look one level up the stack to the caller of this function # Look one level up the stack to the caller of this function
caller_frame = inspect.stack()[1] caller_frame = inspect.stack()[1]
caller_file = Path(caller_frame.filename).resolve() caller_file = Path(caller_frame.filename).resolve()
@ -203,32 +138,54 @@ def compile(loglevel=logging.WARNING) -> bool:
ll_file = Path("/tmp") / caller_file.with_suffix(".ll").name ll_file = Path("/tmp") / caller_file.with_suffix(".ll").name
o_file = caller_file.with_suffix(".o") o_file = caller_file.with_suffix(".o")
_, structs_sym_tab, maps_sym_tab = compile_to_ir( success = True
str(caller_file), str(ll_file), loglevel=loglevel success = compile_to_ir(str(caller_file), str(ll_file)) and success
success = bool(
subprocess.run(
[
"llc",
"-march=bpf",
"-filetype=obj",
"-O2",
str(ll_file),
"-o",
str(o_file),
],
check=True,
)
and success
) )
if not _run_llc(ll_file, o_file): print(f"Object written to {o_file}")
logger.error("Compilation to object file failed.") return success
return False
logger.info(f"Object written to {o_file}")
return True
def BPF(loglevel=logging.WARNING) -> BpfObject: def BPF() -> BpfProgram:
caller_frame = inspect.stack()[1] caller_frame = inspect.stack()[1]
src = inspect.getsource(caller_frame.frame) src = inspect.getsource(caller_frame.frame)
with ( with tempfile.NamedTemporaryFile(
tempfile.NamedTemporaryFile(mode="w+", delete=True, suffix=".py") as f, mode="w+", delete=True, suffix=".py"
tempfile.NamedTemporaryFile(mode="w+", delete=True, suffix=".ll") as inter, ) as f, tempfile.NamedTemporaryFile(
tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".o") as obj_file, mode="w+", delete=True, suffix=".ll"
): ) as inter, tempfile.NamedTemporaryFile(
mode="w+", delete=False, suffix=".o"
) as obj_file:
f.write(src) f.write(src)
f.flush() f.flush()
source = f.name source = f.name
_, structs_sym_tab, maps_sym_tab = compile_to_ir( compile_to_ir(source, str(inter.name))
source, str(inter.name), loglevel=loglevel subprocess.run(
[
"llc",
"-march=bpf",
"-filetype=obj",
"-O2",
str(inter.name),
"-o",
str(obj_file.name),
],
check=True,
) )
_run_llc(str(inter.name), str(obj_file.name))
return BpfObject(str(obj_file.name), structs=structs_sym_tab) return BpfProgram(str(obj_file.name))

View File

@ -12,34 +12,6 @@ class DebugInfoGenerator:
self.module = module self.module = module
self._type_cache = {} # Cache for common debug types self._type_cache = {} # Cache for common debug types
def generate_file_metadata(self, filename, dirname):
self.module._file_metadata = self.module.add_debug_info(
"DIFile",
{ # type: ignore
"filename": filename,
"directory": dirname,
},
)
def generate_debug_cu(
self, language, producer: str, is_optimized: bool, is_distinct: bool
):
self.module._debug_compile_unit = self.module.add_debug_info(
"DICompileUnit",
{ # type: ignore
"language": language,
"file": self.module._file_metadata, # type: ignore
"producer": producer,
"isOptimized": is_optimized,
"runtimeVersion": 0,
"emissionKind": 1,
"splitDebugInlining": False,
"nameTableKind": 0,
},
is_distinct=is_distinct,
)
self.module.add_named_metadata("llvm.dbg.cu", self.module._debug_compile_unit) # type: ignore
def get_basic_type(self, name: str, size: int, encoding: int) -> Any: def get_basic_type(self, name: str, size: int, encoding: int) -> Any:
"""Get or create a basic type with caching""" """Get or create a basic type with caching"""
key = (name, size, encoding) key = (name, size, encoding)
@ -49,10 +21,6 @@ class DebugInfoGenerator:
) )
return self._type_cache[key] return self._type_cache[key]
def get_uint8_type(self) -> Any:
"""Get debug info for signed 8-bit integer"""
return self.get_basic_type("char", 8, dc.DW_ATE_unsigned)
def get_int32_type(self) -> Any: def get_int32_type(self) -> Any:
"""Get debug info for signed 32-bit integer""" """Get debug info for signed 32-bit integer"""
return self.get_basic_type("int", 32, dc.DW_ATE_signed) return self.get_basic_type("int", 32, dc.DW_ATE_signed)
@ -85,20 +53,6 @@ class DebugInfoGenerator:
}, },
) )
def create_array_type_vmlinux(self, type_info: Any, count: int) -> Any:
"""Create an array type of the given base type with specified count"""
base_type, type_sizing = type_info
subrange = self.module.add_debug_info("DISubrange", {"count": count})
return self.module.add_debug_info(
"DICompositeType",
{
"tag": dc.DW_TAG_array_type,
"baseType": base_type,
"size": type_sizing,
"elements": [subrange],
},
)
@staticmethod @staticmethod
def _compute_array_size(base_type: Any, count: int) -> int: def _compute_array_size(base_type: Any, count: int) -> int:
# Extract size from base_type if possible # Extract size from base_type if possible
@ -119,23 +73,6 @@ class DebugInfoGenerator:
}, },
) )
def create_struct_member_vmlinux(
self, name: str, base_type_with_size: Any, offset: int
) -> Any:
"""Create a struct member with the given name, type, and offset"""
base_type, type_size = base_type_with_size
return self.module.add_debug_info(
"DIDerivedType",
{
"tag": dc.DW_TAG_member,
"name": name,
"file": self.module._file_metadata,
"baseType": base_type,
"size": type_size,
"offset": offset,
},
)
def create_struct_type( def create_struct_type(
self, members: List[Any], size: int, is_distinct: bool self, members: List[Any], size: int, is_distinct: bool
) -> Any: ) -> Any:
@ -151,22 +88,6 @@ class DebugInfoGenerator:
is_distinct=is_distinct, is_distinct=is_distinct,
) )
def create_struct_type_with_name(
self, name: str, members: List[Any], size: int, is_distinct: bool
) -> Any:
"""Create a struct type with the given members and size"""
return self.module.add_debug_info(
"DICompositeType",
{
"name": name,
"tag": dc.DW_TAG_structure_type,
"file": self.module._file_metadata,
"size": size,
"elements": members,
},
is_distinct=is_distinct,
)
def create_global_var_debug_info( def create_global_var_debug_info(
self, name: str, var_type: Any, is_local: bool = False self, name: str, var_type: Any, is_local: bool = False
) -> Any: ) -> Any:
@ -188,83 +109,3 @@ class DebugInfoGenerator:
"DIGlobalVariableExpression", "DIGlobalVariableExpression",
{"var": global_var, "expr": self.module.add_debug_info("DIExpression", {})}, {"var": global_var, "expr": self.module.add_debug_info("DIExpression", {})},
) )
def get_int64_type(self):
return self.get_basic_type("long", 64, dc.DW_ATE_signed)
def create_subroutine_type(self, return_type, param_types):
"""
Create a DISubroutineType given return type and list of parameter types.
Equivalent to: !DISubroutineType(types: !{ret, args...})
"""
type_array = [return_type]
if isinstance(param_types, (list, tuple)):
type_array.extend(param_types)
else:
type_array.append(param_types)
return self.module.add_debug_info("DISubroutineType", {"types": type_array})
def create_local_variable_debug_info(
self, name: str, arg: int, var_type: Any
) -> Any:
"""
Create debug info for a local variable (DILocalVariable) without scope.
Example:
!DILocalVariable(name: "ctx", arg: 1, file: !3, line: 20, type: !7)
"""
return self.module.add_debug_info(
"DILocalVariable",
{
"name": name,
"arg": arg,
"file": self.module._file_metadata,
"type": var_type,
},
)
def add_scope_to_local_variable(self, local_variable_debug_info, scope_value):
"""
Add scope information to an existing local variable debug info object.
"""
# TODO: this is a workaround a flaw in the debug info generation. Fix this if possible in the future.
# We should not be touching llvmlite's internals like this.
if hasattr(local_variable_debug_info, "operands"):
# LLVM metadata operands is a tuple, so we need to rebuild it
existing_operands = local_variable_debug_info.operands
# Convert tuple to list, add scope, convert back to tuple
operands_list = list(existing_operands)
operands_list.append(("scope", scope_value))
# Reassign the new tuple
local_variable_debug_info.operands = tuple(operands_list)
def create_subprogram(
self, name: str, subroutine_type: Any, retained_nodes: List[Any]
) -> Any:
"""
Create a DISubprogram for a function.
Args:
name: Function name
subroutine_type: DISubroutineType for the function signature
retained_nodes: List of DILocalVariable nodes for function parameters/variables
Returns:
DISubprogram metadata
"""
return self.module.add_debug_info(
"DISubprogram",
{
"name": name,
"scope": self.module._file_metadata,
"file": self.module._file_metadata,
"type": subroutine_type,
# TODO: the following flags do not exist at the moment in our dwarf constants file. We need to add them.
# "flags": dc.DW_FLAG_Prototyped | dc.DW_FLAG_AllCallsDescribed,
# "spFlags": dc.DW_SPFLAG_Definition | dc.DW_SPFLAG_Optimized,
"unit": self.module._debug_compile_unit,
"retainedNodes": retained_nodes,
},
is_distinct=True,
)

View File

@ -1,17 +0,0 @@
from .expr_pass import eval_expr, handle_expr, get_operand_value
from .type_normalization import convert_to_bool, get_base_type_and_depth
from .ir_ops import deref_to_depth, access_struct_field
from .call_registry import CallHandlerRegistry
from .vmlinux_registry import VmlinuxHandlerRegistry
__all__ = [
"eval_expr",
"handle_expr",
"convert_to_bool",
"get_base_type_and_depth",
"deref_to_depth",
"access_struct_field",
"get_operand_value",
"CallHandlerRegistry",
"VmlinuxHandlerRegistry",
]

View File

@ -1,20 +0,0 @@
class CallHandlerRegistry:
"""Registry for handling different types of calls (helpers, etc.)"""
_handler = None
@classmethod
def set_handler(cls, handler):
"""Set the handler for unknown calls"""
cls._handler = handler
@classmethod
def handle_call(
cls, call, module, builder, func, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Handle a call using the registered handler"""
if cls._handler is None:
return None
return cls._handler(
call, module, builder, func, local_sym_tab, map_sym_tab, structs_sym_tab
)

View File

@ -1,797 +0,0 @@
import ast
from llvmlite import ir
from logging import Logger
import logging
from typing import Dict
from pythonbpf.type_deducer import ctypes_to_ir, is_ctypes
from .call_registry import CallHandlerRegistry
from .ir_ops import deref_to_depth, access_struct_field
from .type_normalization import (
convert_to_bool,
handle_comparator,
get_base_type_and_depth,
)
from .vmlinux_registry import VmlinuxHandlerRegistry
from ..vmlinux_parser.dependency_node import Field
logger: Logger = logging.getLogger(__name__)
# ============================================================================
# Leaf Handlers (No Recursive eval_expr calls)
# ============================================================================
def _handle_name_expr(expr: ast.Name, local_sym_tab: Dict, builder: ir.IRBuilder):
"""Handle ast.Name expressions."""
if expr.id in local_sym_tab:
var = local_sym_tab[expr.id].var
val = builder.load(var)
return val, local_sym_tab[expr.id].ir_type
else:
# Check if it's a vmlinux enum/constant
vmlinux_result = VmlinuxHandlerRegistry.handle_name(expr.id)
if vmlinux_result is not None:
return vmlinux_result
raise SyntaxError(f"Undefined variable {expr.id}")
def _handle_constant_expr(module, builder, expr: ast.Constant):
"""Handle ast.Constant expressions."""
if isinstance(expr.value, int) or isinstance(expr.value, bool):
return ir.Constant(ir.IntType(64), int(expr.value)), ir.IntType(64)
elif isinstance(expr.value, str):
str_name = f".str.{id(expr)}"
str_bytes = expr.value.encode("utf-8") + b"\x00"
str_type = ir.ArrayType(ir.IntType(8), len(str_bytes))
str_constant = ir.Constant(str_type, bytearray(str_bytes))
# Create global variable
global_str = ir.GlobalVariable(module, str_type, name=str_name)
global_str.linkage = "internal"
global_str.global_constant = True
global_str.initializer = str_constant
str_ptr = builder.bitcast(global_str, ir.PointerType(ir.IntType(8)))
return str_ptr, ir.PointerType(ir.IntType(8))
else:
logger.error(f"Unsupported constant type {ast.dump(expr)}")
return None
def _handle_attribute_expr(
func,
expr: ast.Attribute,
local_sym_tab: Dict,
structs_sym_tab: Dict,
builder: ir.IRBuilder,
):
"""Handle ast.Attribute expressions for struct field access."""
if isinstance(expr.value, ast.Name):
var_name = expr.value.id
attr_name = expr.attr
if var_name in local_sym_tab:
var_ptr, var_type, var_metadata = local_sym_tab[var_name]
logger.info(f"Loading attribute {attr_name} from variable {var_name}")
logger.info(
f"Variable type: {var_type}, Variable ptr: {var_ptr}, Variable Metadata: {var_metadata}"
)
if (
hasattr(var_metadata, "__module__")
and var_metadata.__module__ == "vmlinux"
):
# Try vmlinux handler when var_metadata is not a string, but has a module attribute.
# This has been done to keep everything separate in vmlinux struct handling.
vmlinux_result = VmlinuxHandlerRegistry.handle_attribute(
expr, local_sym_tab, None, builder
)
if vmlinux_result is not None:
return vmlinux_result
else:
raise RuntimeError("Vmlinux struct did not process successfully")
elif isinstance(var_metadata, Field):
logger.error(
f"Cannot access field '{attr_name}' on already-loaded field value '{var_name}'"
)
return None
if var_metadata in structs_sym_tab:
return access_struct_field(
builder,
var_ptr,
var_type,
var_metadata,
expr.attr,
structs_sym_tab,
func,
)
else:
logger.error(f"Struct metadata for '{var_name}' not found")
else:
logger.error(f"Undefined variable '{var_name}' for attribute access")
else:
logger.error("Unsupported attribute base expression type")
return None
def _handle_deref_call(expr: ast.Call, local_sym_tab: Dict, builder: ir.IRBuilder):
"""Handle deref function calls."""
logger.info(f"Handling deref {ast.dump(expr)}")
if len(expr.args) != 1:
logger.info("deref takes exactly one argument")
return None
arg = expr.args[0]
if (
isinstance(arg, ast.Call)
and isinstance(arg.func, ast.Name)
and arg.func.id == "deref"
):
logger.info("Multiple deref not supported")
return None
if isinstance(arg, ast.Name):
if arg.id in local_sym_tab:
arg_ptr = local_sym_tab[arg.id].var
else:
logger.info(f"Undefined variable {arg.id}")
return None
else:
logger.info("Unsupported argument type for deref")
return None
if arg_ptr is None:
logger.info("Failed to evaluate deref argument")
return None
# Load the value from pointer
val = builder.load(arg_ptr)
return val, local_sym_tab[arg.id].ir_type
# ============================================================================
# Binary Operations
# ============================================================================
def get_operand_value(
func, module, operand, builder, local_sym_tab, map_sym_tab, structs_sym_tab=None
):
"""Extract the value from an operand, handling variables and constants."""
logger.info(f"Getting operand value for: {ast.dump(operand)}")
if isinstance(operand, ast.Name):
if operand.id in local_sym_tab:
var = local_sym_tab[operand.id].var
var_type = var.type
base_type, depth = get_base_type_and_depth(var_type)
logger.info(f"var is {var}, base_type is {base_type}, depth is {depth}")
if depth == 1:
val = builder.load(var)
return val
else:
val = deref_to_depth(func, builder, var, depth)
return val
else:
# Check if it's a vmlinux enum/constant
vmlinux_result = VmlinuxHandlerRegistry.handle_name(operand.id)
if vmlinux_result is not None:
val, _ = vmlinux_result
return val
elif isinstance(operand, ast.Constant):
if isinstance(operand.value, int):
cst = ir.Constant(ir.IntType(64), int(operand.value))
return cst
raise TypeError(f"Unsupported constant type: {type(operand.value)}")
elif isinstance(operand, ast.BinOp):
res = _handle_binary_op_impl(
func, module, operand, builder, local_sym_tab, map_sym_tab, structs_sym_tab
)
return res
else:
res = eval_expr(
func, module, builder, operand, local_sym_tab, map_sym_tab, structs_sym_tab
)
if res is None:
raise ValueError(f"Failed to evaluate call expression: {operand}")
val, _ = res
logger.info(f"Evaluated expr to {val} of type {val.type}")
base_type, depth = get_base_type_and_depth(val.type)
if depth > 0:
val = deref_to_depth(func, builder, val, depth)
return val
raise TypeError(f"Unsupported operand type: {type(operand)}")
def _handle_binary_op_impl(
func, module, rval, builder, local_sym_tab, map_sym_tab, structs_sym_tab=None
):
op = rval.op
left = get_operand_value(
func, module, rval.left, builder, local_sym_tab, map_sym_tab, structs_sym_tab
)
right = get_operand_value(
func, module, rval.right, builder, local_sym_tab, map_sym_tab, structs_sym_tab
)
logger.info(f"left is {left}, right is {right}, op is {op}")
# NOTE: Before doing the operation, if the operands are integers
# we always extend them to i64. The assignment to LHS will take
# care of truncation if needed.
if isinstance(left.type, ir.IntType) and left.type.width < 64:
left = builder.sext(left, ir.IntType(64))
if isinstance(right.type, ir.IntType) and right.type.width < 64:
right = builder.sext(right, ir.IntType(64))
# Map AST operation nodes to LLVM IR builder methods
op_map = {
ast.Add: builder.add,
ast.Sub: builder.sub,
ast.Mult: builder.mul,
ast.Div: builder.sdiv,
ast.Mod: builder.srem,
ast.LShift: builder.shl,
ast.RShift: builder.lshr,
ast.BitOr: builder.or_,
ast.BitXor: builder.xor,
ast.BitAnd: builder.and_,
ast.FloorDiv: builder.udiv,
}
if type(op) in op_map:
result = op_map[type(op)](left, right)
return result
else:
raise SyntaxError("Unsupported binary operation")
def _handle_binary_op(
func,
module,
rval,
builder,
var_name,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
result = _handle_binary_op_impl(
func, module, rval, builder, local_sym_tab, map_sym_tab, structs_sym_tab
)
if var_name and var_name in local_sym_tab:
logger.info(
f"Storing result {result} into variable {local_sym_tab[var_name].var}"
)
builder.store(result, local_sym_tab[var_name].var)
return result, result.type
# ============================================================================
# Comparison and Unary Operations
# ============================================================================
def _handle_ctypes_call(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
"""Handle ctypes type constructor calls."""
if len(expr.args) != 1:
logger.info("ctypes constructor takes exactly one argument")
return None
arg = expr.args[0]
val = eval_expr(
func,
module,
builder,
arg,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if val is None:
logger.info("Failed to evaluate argument to ctypes constructor")
return None
call_type = expr.func.id
expected_type = ctypes_to_ir(call_type)
# Extract the actual IR value and type
# val could be (value, ir_type) or (value, Field)
value, val_type = val
# If val_type is a Field object (from vmlinux struct), get the actual IR type of the value
if isinstance(val_type, Field):
# The value is already the correct IR value (potentially zero-extended)
# Get the IR type from the value itself
actual_ir_type = value.type
logger.info(
f"Converting vmlinux field {val_type.name} (IR type: {actual_ir_type}) to {call_type}"
)
else:
actual_ir_type = val_type
if actual_ir_type != expected_type:
# NOTE: We are only considering casting to and from int types for now
if isinstance(actual_ir_type, ir.IntType) and isinstance(
expected_type, ir.IntType
):
if actual_ir_type.width < expected_type.width:
value = builder.sext(value, expected_type)
logger.info(
f"Sign-extended from i{actual_ir_type.width} to i{expected_type.width}"
)
elif actual_ir_type.width > expected_type.width:
value = builder.trunc(value, expected_type)
logger.info(
f"Truncated from i{actual_ir_type.width} to i{expected_type.width}"
)
else:
# Same width, just use as-is (e.g., both i64)
pass
else:
raise ValueError(
f"Type mismatch: expected {expected_type}, got {actual_ir_type} (original type: {val_type})"
)
return value, expected_type
def _handle_compare(
func, module, builder, cond, local_sym_tab, map_sym_tab, structs_sym_tab=None
):
"""Handle ast.Compare expressions."""
if len(cond.ops) != 1 or len(cond.comparators) != 1:
logger.error("Only single comparisons are supported")
return None
lhs = eval_expr(
func,
module,
builder,
cond.left,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
rhs = eval_expr(
func,
module,
builder,
cond.comparators[0],
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if lhs is None or rhs is None:
logger.error("Failed to evaluate comparison operands")
return None
lhs, _ = lhs
rhs, _ = rhs
return handle_comparator(func, builder, cond.ops[0], lhs, rhs)
def _handle_unary_op(
func,
module,
builder,
expr: ast.UnaryOp,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
"""Handle ast.UnaryOp expressions."""
if not isinstance(expr.op, ast.Not) and not isinstance(expr.op, ast.USub):
logger.error("Only 'not' and '-' unary operators are supported")
return None
operand = get_operand_value(
func, module, expr.operand, builder, local_sym_tab, map_sym_tab, structs_sym_tab
)
if operand is None:
logger.error("Failed to evaluate operand for unary operation")
return None
if isinstance(expr.op, ast.Not):
true_const = ir.Constant(ir.IntType(1), 1)
result = builder.xor(convert_to_bool(builder, operand), true_const)
return result, ir.IntType(1)
elif isinstance(expr.op, ast.USub):
# Multiply by -1
neg_one = ir.Constant(ir.IntType(64), -1)
result = builder.mul(operand, neg_one)
return result, ir.IntType(64)
return None
# ============================================================================
# Boolean Operations
# ============================================================================
def _handle_and_op(func, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab):
"""Handle `and` boolean operations."""
logger.debug(f"Handling 'and' operator with {len(expr.values)} operands")
merge_block = func.append_basic_block(name="and.merge")
false_block = func.append_basic_block(name="and.false")
incoming_values = []
for i, value in enumerate(expr.values):
is_last = i == len(expr.values) - 1
# Evaluate current operand
operand_result = eval_expr(
func, None, builder, value, local_sym_tab, map_sym_tab, structs_sym_tab
)
if operand_result is None:
logger.error(f"Failed to evaluate operand {i} in 'and' expression")
return None
operand_val, operand_type = operand_result
# Convert to boolean if needed
operand_bool = convert_to_bool(builder, operand_val)
current_block = builder.block
if is_last:
# Last operand: result is this value
builder.branch(merge_block)
incoming_values.append((operand_bool, current_block))
else:
# Not last: check if true, continue or short-circuit
next_check = func.append_basic_block(name=f"and.check_{i + 1}")
builder.cbranch(operand_bool, next_check, false_block)
builder.position_at_end(next_check)
# False block: short-circuit with false
builder.position_at_end(false_block)
builder.branch(merge_block)
false_value = ir.Constant(ir.IntType(1), 0)
incoming_values.append((false_value, false_block))
# Merge block: phi node
builder.position_at_end(merge_block)
phi = builder.phi(ir.IntType(1), name="and.result")
for val, block in incoming_values:
phi.add_incoming(val, block)
logger.debug(f"Generated 'and' with {len(incoming_values)} incoming values")
return phi, ir.IntType(1)
def _handle_or_op(func, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab):
"""Handle `or` boolean operations."""
logger.debug(f"Handling 'or' operator with {len(expr.values)} operands")
merge_block = func.append_basic_block(name="or.merge")
true_block = func.append_basic_block(name="or.true")
incoming_values = []
for i, value in enumerate(expr.values):
is_last = i == len(expr.values) - 1
# Evaluate current operand
operand_result = eval_expr(
func, None, builder, value, local_sym_tab, map_sym_tab, structs_sym_tab
)
if operand_result is None:
logger.error(f"Failed to evaluate operand {i} in 'or' expression")
return None
operand_val, operand_type = operand_result
# Convert to boolean if needed
operand_bool = convert_to_bool(builder, operand_val)
current_block = builder.block
if is_last:
# Last operand: result is this value
builder.branch(merge_block)
incoming_values.append((operand_bool, current_block))
else:
# Not last: check if false, continue or short-circuit
next_check = func.append_basic_block(name=f"or.check_{i + 1}")
builder.cbranch(operand_bool, true_block, next_check)
builder.position_at_end(next_check)
# True block: short-circuit with true
builder.position_at_end(true_block)
builder.branch(merge_block)
true_value = ir.Constant(ir.IntType(1), 1)
incoming_values.append((true_value, true_block))
# Merge block: phi node
builder.position_at_end(merge_block)
phi = builder.phi(ir.IntType(1), name="or.result")
for val, block in incoming_values:
phi.add_incoming(val, block)
logger.debug(f"Generated 'or' with {len(incoming_values)} incoming values")
return phi, ir.IntType(1)
def _handle_boolean_op(
func,
module,
builder,
expr: ast.BoolOp,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
"""Handle `and` and `or` boolean operations."""
if isinstance(expr.op, ast.And):
return _handle_and_op(
func, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab
)
elif isinstance(expr.op, ast.Or):
return _handle_or_op(
func, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab
)
else:
logger.error(f"Unsupported boolean operator: {type(expr.op).__name__}")
return None
# ============================================================================
# Struct casting (including vmlinux struct casting)
# ============================================================================
def _handle_vmlinux_cast(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
# handle expressions such as struct_request(ctx.di) where struct_request is a vmlinux
# struct and ctx.di is a pointer to a struct but is actually represented as a c_uint64
# which needs to be cast to a pointer. This is also a field of another vmlinux struct
"""Handle vmlinux struct cast expressions like struct_request(ctx.di)."""
if len(expr.args) != 1:
logger.info("vmlinux struct cast takes exactly one argument")
return None
# Get the struct name
struct_name = expr.func.id
# Evaluate the argument (e.g., ctx.di which is a c_uint64)
arg_result = eval_expr(
func,
module,
builder,
expr.args[0],
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if arg_result is None:
logger.info("Failed to evaluate argument to vmlinux struct cast")
return None
arg_val, arg_type = arg_result
# Get the vmlinux struct type
vmlinux_struct_type = VmlinuxHandlerRegistry.get_struct_type(struct_name)
if vmlinux_struct_type is None:
logger.error(f"Failed to get vmlinux struct type for {struct_name}")
return None
# Cast the integer/value to a pointer to the struct
# If arg_val is an integer type, we need to inttoptr it
ptr_type = ir.PointerType()
# TODO: add a field value type check here
# print(arg_type)
if isinstance(arg_type, Field):
if ctypes_to_ir(arg_type.type.__name__):
# Cast integer to pointer
casted_ptr = builder.inttoptr(arg_val, ptr_type)
else:
logger.error(f"Unsupported type for vmlinux cast: {arg_type}")
return None
else:
casted_ptr = builder.inttoptr(arg_val, ptr_type)
return casted_ptr, vmlinux_struct_type
def _handle_user_defined_struct_cast(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
):
"""Handle user-defined struct cast expressions like iphdr(nh).
This casts a pointer/integer value to a pointer to the user-defined struct,
similar to how vmlinux struct casts work but for user-defined @struct types.
"""
if len(expr.args) != 1:
logger.info("User-defined struct cast takes exactly one argument")
return None
# Get the struct name
struct_name = expr.func.id
if struct_name not in structs_sym_tab:
logger.error(f"Struct {struct_name} not found in structs_sym_tab")
return None
struct_info = structs_sym_tab[struct_name]
# Evaluate the argument (e.g.,
# an address/pointer value)
arg_result = eval_expr(
func,
module,
builder,
expr.args[0],
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if arg_result is None:
logger.info("Failed to evaluate argument to user-defined struct cast")
return None
arg_val, arg_type = arg_result
# Cast the integer/pointer value to a pointer to the struct type
# The struct pointer type is a pointer to the struct's IR type
struct_ptr_type = ir.PointerType(struct_info.ir_type)
# If arg_val is an integer type (like i64), convert to pointer using inttoptr
if isinstance(arg_val.type, ir.IntType):
casted_ptr = builder.inttoptr(arg_val, struct_ptr_type)
logger.info(f"Cast integer to pointer for struct {struct_name}")
elif isinstance(arg_val.type, ir.PointerType):
# If already a pointer, bitcast to the struct pointer type
casted_ptr = builder.bitcast(arg_val, struct_ptr_type)
logger.info(f"Bitcast pointer to struct pointer for {struct_name}")
else:
logger.error(f"Unsupported type for user-defined struct cast: {arg_val.type}")
return None
return casted_ptr, struct_name
# ============================================================================
# Expression Dispatcher
# ============================================================================
def eval_expr(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
logger.info(f"Evaluating expression: {ast.dump(expr)}")
if isinstance(expr, ast.Name):
return _handle_name_expr(expr, local_sym_tab, builder)
elif isinstance(expr, ast.Constant):
return _handle_constant_expr(module, builder, expr)
elif isinstance(expr, ast.Call):
if isinstance(expr.func, ast.Name) and VmlinuxHandlerRegistry.is_vmlinux_struct(
expr.func.id
):
return _handle_vmlinux_cast(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if isinstance(expr.func, ast.Name) and expr.func.id == "deref":
return _handle_deref_call(expr, local_sym_tab, builder)
if isinstance(expr.func, ast.Name) and is_ctypes(expr.func.id):
return _handle_ctypes_call(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if isinstance(expr.func, ast.Name) and (expr.func.id in structs_sym_tab):
return _handle_user_defined_struct_cast(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
result = CallHandlerRegistry.handle_call(
expr, module, builder, func, local_sym_tab, map_sym_tab, structs_sym_tab
)
if result is not None:
return result
logger.warning(f"Unknown call: {ast.dump(expr)}")
return None
elif isinstance(expr, ast.Attribute):
return _handle_attribute_expr(
func, expr, local_sym_tab, structs_sym_tab, builder
)
elif isinstance(expr, ast.BinOp):
return _handle_binary_op(
func,
module,
expr,
builder,
None,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
elif isinstance(expr, ast.Compare):
return _handle_compare(
func, module, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab
)
elif isinstance(expr, ast.UnaryOp):
return _handle_unary_op(
func, module, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab
)
elif isinstance(expr, ast.BoolOp):
return _handle_boolean_op(
func, module, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab
)
logger.info("Unsupported expression evaluation")
return None
def handle_expr(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
):
"""Handle expression statements in the function body."""
logger.info(f"Handling expression: {ast.dump(expr)}")
call = expr.value
if isinstance(call, ast.Call):
eval_expr(
func,
module,
builder,
call,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
else:
logger.info("Unsupported expression type")

View File

@ -1,116 +0,0 @@
import logging
from llvmlite import ir
logger = logging.getLogger(__name__)
def deref_to_depth(func, builder, val, target_depth):
"""Dereference a pointer to a certain depth."""
cur_val = val
cur_type = val.type
for depth in range(target_depth):
if not isinstance(val.type, ir.PointerType):
logger.error("Cannot dereference further, non-pointer type")
return None
# dereference with null check
pointee_type = cur_type.pointee
def load_op(builder, ptr):
return builder.load(ptr)
cur_val = _null_checked_operation(
func, builder, cur_val, load_op, pointee_type, f"deref_{depth}"
)
cur_type = pointee_type
logger.debug(f"Dereferenced to depth {depth}, type: {pointee_type}")
return cur_val
def _null_checked_operation(func, builder, ptr, operation, result_type, name_prefix):
"""
Generic null-checked operation on a pointer.
"""
curr_block = builder.block
not_null_block = func.append_basic_block(name=f"{name_prefix}_not_null")
merge_block = func.append_basic_block(name=f"{name_prefix}_merge")
null_ptr = ir.Constant(ptr.type, None)
is_not_null = builder.icmp_signed("!=", ptr, null_ptr)
builder.cbranch(is_not_null, not_null_block, merge_block)
builder.position_at_end(not_null_block)
result = operation(builder, ptr)
not_null_after = builder.block
builder.branch(merge_block)
builder.position_at_end(merge_block)
phi = builder.phi(result_type, name=f"{name_prefix}_result")
if isinstance(result_type, ir.IntType):
null_val = ir.Constant(result_type, 0)
elif isinstance(result_type, ir.PointerType):
null_val = ir.Constant(result_type, None)
else:
null_val = ir.Constant(result_type, ir.Undefined)
phi.add_incoming(null_val, curr_block)
phi.add_incoming(result, not_null_after)
return phi
def access_struct_field(
builder, var_ptr, var_type, var_metadata, field_name, structs_sym_tab, func=None
):
"""
Access a struct field - automatically returns value or pointer based on field type.
"""
metadata = (
structs_sym_tab.get(var_metadata)
if isinstance(var_metadata, str)
else var_metadata
)
if not metadata or field_name not in metadata.fields:
raise ValueError(f"Field '{field_name}' not found in struct")
field_type = metadata.field_type(field_name)
is_ptr_to_struct = isinstance(var_type, ir.PointerType) and isinstance(
var_metadata, str
)
# Get struct pointer
struct_ptr = builder.load(var_ptr) if is_ptr_to_struct else var_ptr
should_load = not isinstance(field_type, ir.ArrayType)
def field_access_op(builder, ptr):
typed_ptr = builder.bitcast(ptr, metadata.ir_type.as_pointer())
field_ptr = metadata.gep(builder, typed_ptr, field_name)
return builder.load(field_ptr) if should_load else field_ptr
# Handle null check for pointer-to-struct
if is_ptr_to_struct:
if func is None:
raise ValueError("func required for null-safe struct pointer access")
if should_load:
result_type = field_type
else:
result_type = field_type.as_pointer()
result = _null_checked_operation(
func,
builder,
struct_ptr,
field_access_op,
result_type,
f"field_{field_name}",
)
return result, field_type
field_ptr = metadata.gep(builder, struct_ptr, field_name)
result = builder.load(field_ptr) if should_load else field_ptr
return result, field_type

View File

@ -1,83 +0,0 @@
import logging
import ast
from llvmlite import ir
from .ir_ops import deref_to_depth
logger = logging.getLogger(__name__)
COMPARISON_OPS = {
ast.Eq: "==",
ast.NotEq: "!=",
ast.Lt: "<",
ast.LtE: "<=",
ast.Gt: ">",
ast.GtE: ">=",
ast.Is: "==",
ast.IsNot: "!=",
}
def get_base_type_and_depth(ir_type):
"""Get the base type for pointer types."""
cur_type = ir_type
depth = 0
while isinstance(cur_type, ir.PointerType):
depth += 1
cur_type = cur_type.pointee
return cur_type, depth
def _normalize_types(func, builder, lhs, rhs):
"""Normalize types for comparison."""
logger.info(f"Normalizing types: {lhs.type} vs {rhs.type}")
if isinstance(lhs.type, ir.IntType) and isinstance(rhs.type, ir.IntType):
if lhs.type.width < rhs.type.width:
lhs = builder.sext(lhs, rhs.type)
else:
rhs = builder.sext(rhs, lhs.type)
return lhs, rhs
elif not isinstance(lhs.type, ir.PointerType) and not isinstance(
rhs.type, ir.PointerType
):
logger.error(f"Type mismatch: {lhs.type} vs {rhs.type}")
return None, None
else:
lhs_base, lhs_depth = get_base_type_and_depth(lhs.type)
rhs_base, rhs_depth = get_base_type_and_depth(rhs.type)
if lhs_base == rhs_base:
if lhs_depth < rhs_depth:
rhs = deref_to_depth(func, builder, rhs, rhs_depth - lhs_depth)
elif rhs_depth < lhs_depth:
lhs = deref_to_depth(func, builder, lhs, lhs_depth - rhs_depth)
return _normalize_types(func, builder, lhs, rhs)
def convert_to_bool(builder, val):
"""Convert a value to boolean."""
if val.type == ir.IntType(1):
return val
if isinstance(val.type, ir.PointerType):
zero = ir.Constant(val.type, None)
else:
zero = ir.Constant(val.type, 0)
return builder.icmp_signed("!=", val, zero)
def handle_comparator(func, builder, op, lhs, rhs):
"""Handle comparison operations."""
if lhs.type != rhs.type:
lhs, rhs = _normalize_types(func, builder, lhs, rhs)
if lhs is None or rhs is None:
return None
if type(op) not in COMPARISON_OPS:
logger.error(f"Unsupported comparison operator: {type(op)}")
return None
predicate = COMPARISON_OPS[type(op)]
result = builder.icmp_signed(predicate, lhs, rhs)
logger.debug(f"Comparison result: {result}")
return result, ir.IntType(1)

View File

@ -1,75 +0,0 @@
import ast
from pythonbpf.vmlinux_parser.vmlinux_exports_handler import VmlinuxHandler
class VmlinuxHandlerRegistry:
"""Registry for vmlinux handler operations"""
_handler = None
@classmethod
def set_handler(cls, handler: VmlinuxHandler):
"""Set the vmlinux handler"""
cls._handler = handler
@classmethod
def get_handler(cls):
"""Get the vmlinux handler"""
return cls._handler
@classmethod
def handle_name(cls, name):
"""Try to handle a name as vmlinux enum/constant"""
if cls._handler is None:
return None
return cls._handler.handle_vmlinux_enum(name)
@classmethod
def handle_attribute(cls, expr, local_sym_tab, module, builder):
"""Try to handle an attribute access as vmlinux struct field"""
if cls._handler is None:
return None
if isinstance(expr.value, ast.Name):
var_name = expr.value.id
field_name = expr.attr
return cls._handler.handle_vmlinux_struct_field(
var_name, field_name, module, builder, local_sym_tab
)
return None
@classmethod
def get_struct_debug_info(cls, name):
if cls._handler is None:
return False
return cls._handler.get_struct_debug_info(name)
@classmethod
def is_vmlinux_struct(cls, name):
"""Check if a name refers to a vmlinux struct"""
if cls._handler is None:
return False
return cls._handler.is_vmlinux_struct(name)
@classmethod
def get_struct_type(cls, name):
"""Try to handle a struct name as vmlinux struct"""
if cls._handler is None:
return None
return cls._handler.get_vmlinux_struct_type(name)
@classmethod
def has_field(cls, vmlinux_struct_name, field_name):
"""Check if a vmlinux struct has a specific field"""
if cls._handler is None:
return False
return cls._handler.has_field(vmlinux_struct_name, field_name)
@classmethod
def get_field_type(cls, vmlinux_struct_name, field_name):
"""Get the type of a field in a vmlinux struct"""
if cls._handler is None:
return None
assert isinstance(cls._handler, VmlinuxHandler)
return cls._handler.get_field_type(vmlinux_struct_name, field_name)

145
pythonbpf/expr_pass.py Normal file
View File

@ -0,0 +1,145 @@
import ast
from llvmlite import ir
def eval_expr(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
print(f"Evaluating expression: {ast.dump(expr)}")
if isinstance(expr, ast.Name):
if expr.id in local_sym_tab:
var = local_sym_tab[expr.id].var
val = builder.load(var)
return val, local_sym_tab[expr.id].ir_type # return value and type
else:
print(f"Undefined variable {expr.id}")
return None
elif isinstance(expr, ast.Constant):
if isinstance(expr.value, int):
return ir.Constant(ir.IntType(64), expr.value), ir.IntType(64)
elif isinstance(expr.value, bool):
return ir.Constant(ir.IntType(1), int(expr.value)), ir.IntType(1)
else:
print("Unsupported constant type")
return None
elif isinstance(expr, ast.Call):
# delayed import to avoid circular dependency
from pythonbpf.helper import HelperHandlerRegistry, handle_helper_call
if isinstance(expr.func, ast.Name):
# check deref
if expr.func.id == "deref":
print(f"Handling deref {ast.dump(expr)}")
if len(expr.args) != 1:
print("deref takes exactly one argument")
return None
arg = expr.args[0]
if (
isinstance(arg, ast.Call)
and isinstance(arg.func, ast.Name)
and arg.func.id == "deref"
):
print("Multiple deref not supported")
return None
if isinstance(arg, ast.Name):
if arg.id in local_sym_tab:
arg = local_sym_tab[arg.id].var
else:
print(f"Undefined variable {arg.id}")
return None
if arg is None:
print("Failed to evaluate deref argument")
return None
# Since we are handling only name case, directly take type from sym tab
val = builder.load(arg)
return val, local_sym_tab[expr.args[0].id].ir_type
# check for helpers
if HelperHandlerRegistry.has_handler(expr.func.id):
return handle_helper_call(
expr,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
elif isinstance(expr.func, ast.Attribute):
print(f"Handling method call: {ast.dump(expr.func)}")
if isinstance(expr.func.value, ast.Call) and isinstance(
expr.func.value.func, ast.Name
):
method_name = expr.func.attr
if HelperHandlerRegistry.has_handler(method_name):
return handle_helper_call(
expr,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
elif isinstance(expr.func.value, ast.Name):
obj_name = expr.func.value.id
method_name = expr.func.attr
if obj_name in map_sym_tab:
if HelperHandlerRegistry.has_handler(method_name):
return handle_helper_call(
expr,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
elif isinstance(expr, ast.Attribute):
if isinstance(expr.value, ast.Name):
var_name = expr.value.id
attr_name = expr.attr
if var_name in local_sym_tab:
var_ptr, var_type, var_metadata = local_sym_tab[var_name]
print(f"Loading attribute {attr_name} from variable {var_name}")
print(f"Variable type: {var_type}, Variable ptr: {var_ptr}")
metadata = structs_sym_tab[var_metadata]
if attr_name in metadata.fields:
gep = metadata.gep(builder, var_ptr, attr_name)
val = builder.load(gep)
field_type = metadata.field_type(attr_name)
return val, field_type
print("Unsupported expression evaluation")
return None
def handle_expr(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
):
"""Handle expression statements in the function body."""
print(f"Handling expression: {ast.dump(expr)}")
call = expr.value
if isinstance(call, ast.Call):
eval_expr(
func,
module,
builder,
call,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
else:
print("Unsupported expression type")

View File

@ -1,3 +0,0 @@
from .functions_pass import func_proc
__all__ = ["func_proc"]

View File

@ -1,82 +0,0 @@
import ast
import llvmlite.ir as ir
import logging
from pythonbpf.debuginfo import DebugInfoGenerator
from pythonbpf.expr import VmlinuxHandlerRegistry
import ctypes
logger = logging.getLogger(__name__)
def generate_function_debug_info(
func_node: ast.FunctionDef, module: ir.Module, func: ir.Function
):
generator = DebugInfoGenerator(module)
leading_argument = func_node.args.args[0]
leading_argument_name = leading_argument.arg
annotation = leading_argument.annotation
if func_node.returns is None:
# TODO: should check if this logic is consistent with function return type handling elsewhere
return_type = ctypes.c_int64()
elif hasattr(func_node.returns, "id"):
return_type = func_node.returns.id
if return_type == "c_int32":
return_type = generator.get_int32_type()
elif return_type == "c_int64":
return_type = generator.get_int64_type()
elif return_type == "c_uint32":
return_type = generator.get_uint32_type()
elif return_type == "c_uint64":
return_type = generator.get_uint64_type()
else:
logger.warning(
"Return type should be int32, int64, uint32 or uint64 only. Falling back to int64"
)
return_type = generator.get_int64_type()
else:
return_type = ctypes.c_int64()
# context processing
if annotation is None:
logger.warning("Type of context of function not found.")
return
if hasattr(annotation, "id"):
ctype_name = annotation.id
if ctype_name == "c_void_p":
return
elif ctype_name.startswith("ctypes"):
raise SyntaxError(
"The first argument should always be a pointer to a struct or a void pointer"
)
context_debug_info = VmlinuxHandlerRegistry.get_struct_debug_info(annotation.id)
# Create pointer to context this must be created fresh for each function
# to avoid circular reference issues when the same struct is used in multiple functions
pointer_to_context_debug_info = generator.create_pointer_type(
context_debug_info, 64
)
# Create subroutine type - also fresh for each function
subroutine_type = generator.create_subroutine_type(
return_type, pointer_to_context_debug_info
)
# Create local variable - fresh for each function with unique name
context_local_variable = generator.create_local_variable_debug_info(
leading_argument_name, 1, pointer_to_context_debug_info
)
retained_nodes = [context_local_variable]
logger.info(f"Generating debug info for function {func_node.name}")
# Create subprogram with is_distinct=True to ensure each function gets unique debug info
subprogram_debug_info = generator.create_subprogram(
func_node.name, subroutine_type, retained_nodes
)
generator.add_scope_to_local_variable(
context_local_variable, subprogram_debug_info
)
func.set_metadata("dbg", subprogram_debug_info)
else:
logger.error(f"Invalid annotation type for argument '{leading_argument_name}'")

View File

@ -1,88 +0,0 @@
import ast
def get_probe_string(func_node):
"""Extract the probe string from the decorator of the function node"""
# TODO: right now we have the whole string in the section decorator
# But later we can implement typed tuples for tracepoints and kprobes
# For helper functions, we return "helper"
for decorator in func_node.decorator_list:
if isinstance(decorator, ast.Name) and decorator.id == "bpfglobal":
return None
if isinstance(decorator, ast.Call) and isinstance(decorator.func, ast.Name):
if decorator.func.id == "section" and len(decorator.args) == 1:
arg = decorator.args[0]
if isinstance(arg, ast.Constant) and isinstance(arg.value, str):
return arg.value
return "helper"
def is_global_function(func_node):
"""Check if the function is a global"""
for decorator in func_node.decorator_list:
if isinstance(decorator, ast.Name) and decorator.id in (
"map",
"bpfglobal",
"struct",
):
return True
return False
def infer_return_type(func_node: ast.FunctionDef):
if not isinstance(func_node, (ast.FunctionDef, ast.AsyncFunctionDef)):
raise TypeError("Expected ast.FunctionDef")
if func_node.returns is not None:
try:
return ast.unparse(func_node.returns)
except Exception:
node = func_node.returns
if isinstance(node, ast.Name):
return node.id
if isinstance(node, ast.Attribute):
return getattr(node, "attr", type(node).__name__)
try:
return str(node)
except Exception:
return type(node).__name__
found_type = None
def _expr_type(e):
if e is None:
return "None"
if isinstance(e, ast.Constant):
return type(e.value).__name__
if isinstance(e, ast.Name):
return e.id
if isinstance(e, ast.Call):
f = e.func
if isinstance(f, ast.Name):
return f.id
if isinstance(f, ast.Attribute):
try:
return ast.unparse(f)
except Exception:
return getattr(f, "attr", type(f).__name__)
try:
return ast.unparse(f)
except Exception:
return type(f).__name__
if isinstance(e, ast.Attribute):
try:
return ast.unparse(e)
except Exception:
return getattr(e, "attr", type(e).__name__)
try:
return ast.unparse(e)
except Exception:
return type(e).__name__
for walked_node in ast.walk(func_node):
if isinstance(walked_node, ast.Return):
t = _expr_type(walked_node.value)
if found_type is None:
found_type = t
elif found_type != t:
raise ValueError(f"Conflicting return types: {found_type} vs {t}")
return found_type or "None"

View File

@ -1,514 +0,0 @@
from llvmlite import ir
import ast
import logging
from pythonbpf.helper import (
HelperHandlerRegistry,
reset_scratch_pool,
)
from pythonbpf.type_deducer import ctypes_to_ir
from pythonbpf.expr import (
eval_expr,
handle_expr,
convert_to_bool,
VmlinuxHandlerRegistry,
)
from pythonbpf.assign_pass import (
handle_variable_assignment,
handle_struct_field_assignment,
)
from pythonbpf.allocation_pass import (
handle_assign_allocation,
allocate_temp_pool,
create_targets_and_rvals,
LocalSymbol,
)
from .function_debug_info import generate_function_debug_info
from .return_utils import handle_none_return, handle_xdp_return, is_xdp_name
from .function_metadata import get_probe_string, is_global_function, infer_return_type
logger = logging.getLogger(__name__)
# ============================================================================
# SECTION 1: Memory Allocation
# ============================================================================
def count_temps_in_call(call_node, local_sym_tab):
"""Count the number of temporary variables needed for a function call."""
count = {}
is_helper = False
# NOTE: We exclude print calls for now
if isinstance(call_node.func, ast.Name):
if (
HelperHandlerRegistry.has_handler(call_node.func.id)
and call_node.func.id != "print"
):
is_helper = True
func_name = call_node.func.id
elif isinstance(call_node.func, ast.Attribute):
if HelperHandlerRegistry.has_handler(call_node.func.attr):
is_helper = True
func_name = call_node.func.attr
if not is_helper:
return {} # No temps needed
for arg_idx in range(len(call_node.args)):
# NOTE: Count all non-name arguments
# For struct fields, if it is being passed as an argument,
# The struct object should already exist in the local_sym_tab
arg = call_node.args[arg_idx]
if isinstance(arg, ast.Name) or (
isinstance(arg, ast.Attribute) and arg.value.id in local_sym_tab
):
continue
param_type = HelperHandlerRegistry.get_param_type(func_name, arg_idx)
if isinstance(param_type, ir.PointerType):
pointee_type = param_type.pointee
count[pointee_type] = count.get(pointee_type, 0) + 1
return count
def handle_if_allocation(
module, builder, stmt, func, ret_type, map_sym_tab, local_sym_tab, structs_sym_tab
):
"""Recursively handle allocations in if/else branches."""
if stmt.body:
allocate_mem(
module,
builder,
stmt.body,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
if stmt.orelse:
allocate_mem(
module,
builder,
stmt.orelse,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
def allocate_mem(
module, builder, body, func, ret_type, map_sym_tab, local_sym_tab, structs_sym_tab
):
max_temps_needed = {}
def merge_type_counts(count_dict):
nonlocal max_temps_needed
for typ, cnt in count_dict.items():
max_temps_needed[typ] = max(max_temps_needed.get(typ, 0), cnt)
def update_max_temps_for_stmt(stmt):
nonlocal max_temps_needed
if isinstance(stmt, ast.If):
for s in stmt.body:
update_max_temps_for_stmt(s)
for s in stmt.orelse:
update_max_temps_for_stmt(s)
return
stmt_temps = {}
for node in ast.walk(stmt):
if isinstance(node, ast.Call):
call_temps = count_temps_in_call(node, local_sym_tab)
for typ, cnt in call_temps.items():
stmt_temps[typ] = stmt_temps.get(typ, 0) + cnt
merge_type_counts(stmt_temps)
for stmt in body:
update_max_temps_for_stmt(stmt)
# Handle allocations
if isinstance(stmt, ast.If):
handle_if_allocation(
module,
builder,
stmt,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
elif isinstance(stmt, ast.Assign):
handle_assign_allocation(
builder, stmt, local_sym_tab, map_sym_tab, structs_sym_tab
)
allocate_temp_pool(builder, max_temps_needed, local_sym_tab)
return local_sym_tab
# ============================================================================
# SECTION 2: Statement Handlers
# ============================================================================
def handle_assign(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
):
"""Handle assignment statements in the function body."""
# NOTE: Support multi-target assignments (e.g.: a, b = 1, 2)
targets, rvals = create_targets_and_rvals(stmt)
for target, rval in zip(targets, rvals):
if isinstance(target, ast.Name):
# NOTE: Simple variable assignment case: x = 5
var_name = target.id
result = handle_variable_assignment(
func,
module,
builder,
var_name,
rval,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if not result:
logger.error(f"Failed to handle assignment to {var_name}")
continue
if isinstance(target, ast.Attribute):
# NOTE: Struct field assignment case: pkt.field = value
handle_struct_field_assignment(
func,
module,
builder,
target,
rval,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
continue
# Unsupported target type
logger.error(f"Unsupported assignment target: {ast.dump(target)}")
def handle_cond(
func, module, builder, cond, local_sym_tab, map_sym_tab, structs_sym_tab=None
):
val = eval_expr(
func, module, builder, cond, local_sym_tab, map_sym_tab, structs_sym_tab
)[0]
return convert_to_bool(builder, val)
def handle_if(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab=None
):
"""Handle if statements in the function body."""
logger.info("Handling if statement")
# start = builder.block.parent
then_block = func.append_basic_block(name="if.then")
merge_block = func.append_basic_block(name="if.end")
if stmt.orelse:
else_block = func.append_basic_block(name="if.else")
else:
else_block = None
cond = handle_cond(
func, module, builder, stmt.test, local_sym_tab, map_sym_tab, structs_sym_tab
)
if else_block:
builder.cbranch(cond, then_block, else_block)
else:
builder.cbranch(cond, then_block, merge_block)
builder.position_at_end(then_block)
for s in stmt.body:
process_stmt(
func, module, builder, s, local_sym_tab, map_sym_tab, structs_sym_tab, False
)
if not builder.block.is_terminated:
builder.branch(merge_block)
if else_block:
builder.position_at_end(else_block)
for s in stmt.orelse:
process_stmt(
func,
module,
builder,
s,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
False,
)
if not builder.block.is_terminated:
builder.branch(merge_block)
builder.position_at_end(merge_block)
def handle_return(builder, stmt, local_sym_tab, ret_type):
logger.info(f"Handling return statement: {ast.dump(stmt)}")
if stmt.value is None:
return handle_none_return(builder)
elif isinstance(stmt.value, ast.Name) and is_xdp_name(stmt.value.id):
return handle_xdp_return(stmt, builder, ret_type)
else:
val = eval_expr(
func=None,
module=None,
builder=builder,
expr=stmt.value,
local_sym_tab=local_sym_tab,
map_sym_tab={},
structs_sym_tab={},
)
logger.info(f"Evaluated return expression to {val}")
builder.ret(val[0])
return True
def process_stmt(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
did_return,
ret_type=ir.IntType(64),
):
logger.info(f"Processing statement: {ast.dump(stmt)}")
reset_scratch_pool()
if isinstance(stmt, ast.Expr):
handle_expr(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
elif isinstance(stmt, ast.Assign):
handle_assign(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
)
elif isinstance(stmt, ast.AugAssign):
raise SyntaxError("Augmented assignment not supported")
elif isinstance(stmt, ast.If):
handle_if(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
)
elif isinstance(stmt, ast.Return):
did_return = handle_return(
builder,
stmt,
local_sym_tab,
ret_type,
)
return did_return
# ============================================================================
# SECTION 3: Function Body Processing
# ============================================================================
def process_func_body(
module,
builder,
func_node,
func,
ret_type,
map_sym_tab,
structs_sym_tab,
):
"""Process the body of a bpf function"""
# TODO: A lot. We just have print -> bpf_trace_printk for now
did_return = False
local_sym_tab = {}
# Add the context parameter (first function argument) to the local symbol table
if func_node.args.args and len(func_node.args.args) > 0:
context_arg = func_node.args.args[0]
context_name = context_arg.arg
if hasattr(context_arg, "annotation") and context_arg.annotation:
if isinstance(context_arg.annotation, ast.Name):
context_type_name = context_arg.annotation.id
elif isinstance(context_arg.annotation, ast.Attribute):
context_type_name = context_arg.annotation.attr
else:
raise TypeError(
f"Unsupported annotation type: {ast.dump(context_arg.annotation)}"
)
if VmlinuxHandlerRegistry.is_vmlinux_struct(context_type_name):
resolved_type = VmlinuxHandlerRegistry.get_struct_type(
context_type_name
)
context_type = LocalSymbol(None, None, resolved_type)
local_sym_tab[context_name] = context_type
logger.info(f"Added argument '{context_name}' to local symbol table")
# pre-allocate dynamic variables
local_sym_tab = allocate_mem(
module,
builder,
func_node.body,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
logger.info(f"Local symbol table: {local_sym_tab.keys()}")
for stmt in func_node.body:
did_return = process_stmt(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
did_return,
ret_type,
)
if not did_return:
builder.ret(ir.Constant(ir.IntType(64), 0))
def process_bpf_chunk(func_node, module, return_type, map_sym_tab, structs_sym_tab):
"""Process a single BPF chunk (function) and emit corresponding LLVM IR."""
func_name = func_node.name
ret_type = return_type
# TODO: parse parameters
param_types = []
if func_node.args.args:
# Assume first arg to be ctx
param_types.append(ir.PointerType())
func_ty = ir.FunctionType(ret_type, param_types)
func = ir.Function(module, func_ty, func_name)
func.linkage = "dso_local"
func.attributes.add("nounwind")
func.attributes.add("noinline")
# func.attributes.add("optnone")
if func_node.args.args:
# Only look at the first argument for now
param = func.args[0]
param.add_attribute("nocapture")
probe_string = get_probe_string(func_node)
if probe_string is not None:
func.section = probe_string
block = func.append_basic_block(name="entry")
builder = ir.IRBuilder(block)
process_func_body(
module,
builder,
func_node,
func,
ret_type,
map_sym_tab,
structs_sym_tab,
)
return func
# ============================================================================
# SECTION 4: Top-Level Function Processor
# ============================================================================
def func_proc(tree, module, chunks, map_sym_tab, structs_sym_tab):
for func_node in chunks:
if is_global_function(func_node):
continue
func_type = get_probe_string(func_node)
logger.info(f"Found probe_string of {func_node.name}: {func_type}")
func = process_bpf_chunk(
func_node,
module,
ctypes_to_ir(infer_return_type(func_node)),
map_sym_tab,
structs_sym_tab,
)
logger.info(f"Generating Debug Info for Function {func_node.name}")
generate_function_debug_info(func_node, module, func)
# TODO: WIP, for string assignment to fixed-size arrays
def assign_string_to_array(builder, target_array_ptr, source_string_ptr, array_length):
"""
Copy a string (i8*) to a fixed-size array ([N x i8]*)
"""
# Create a loop to copy characters one by one
# entry_block = builder.block
copy_block = builder.append_basic_block("copy_char")
end_block = builder.append_basic_block("copy_end")
# Create loop counter
i = builder.alloca(ir.IntType(32))
builder.store(ir.Constant(ir.IntType(32), 0), i)
# Start the loop
builder.branch(copy_block)
# Copy loop
builder.position_at_end(copy_block)
idx = builder.load(i)
in_bounds = builder.icmp_unsigned(
"<", idx, ir.Constant(ir.IntType(32), array_length)
)
builder.cbranch(in_bounds, copy_block, end_block)
with builder.if_then(in_bounds):
# Load character from source
src_ptr = builder.gep(source_string_ptr, [idx])
char = builder.load(src_ptr)
# Store character in target
dst_ptr = builder.gep(target_array_ptr, [ir.Constant(ir.IntType(32), 0), idx])
builder.store(char, dst_ptr)
# Increment counter
next_idx = builder.add(idx, ir.Constant(ir.IntType(32), 1))
builder.store(next_idx, i)
builder.position_at_end(end_block)
# Ensure null termination
last_idx = ir.Constant(ir.IntType(32), array_length - 1)
null_ptr = builder.gep(target_array_ptr, [ir.Constant(ir.IntType(32), 0), last_idx])
builder.store(ir.Constant(ir.IntType(8), 0), null_ptr)

View File

@ -1,44 +0,0 @@
import logging
import ast
from llvmlite import ir
logger: logging.Logger = logging.getLogger(__name__)
XDP_ACTIONS = {
"XDP_ABORTED": 0,
"XDP_DROP": 1,
"XDP_PASS": 2,
"XDP_TX": 3,
"XDP_REDIRECT": 4,
}
def handle_none_return(builder) -> bool:
"""Handle return or return None -> returns 0."""
builder.ret(ir.Constant(ir.IntType(64), 0))
logger.debug("Generated default return: 0")
return True
def is_xdp_name(name: str) -> bool:
"""Check if a name is an XDP action"""
return name in XDP_ACTIONS
def handle_xdp_return(stmt: ast.Return, builder, ret_type) -> bool:
"""Handle XDP returns"""
if not isinstance(stmt.value, ast.Name):
return False
action_name = stmt.value.id
if action_name not in XDP_ACTIONS:
raise ValueError(
f"Unknown XDP action: {action_name}. Available: {XDP_ACTIONS.keys()}"
)
value = XDP_ACTIONS[action_name]
builder.ret(ir.Constant(ret_type, value))
logger.debug(f"Generated XDP action return: {action_name} = {value}")
return True

726
pythonbpf/functions_pass.py Normal file
View File

@ -0,0 +1,726 @@
from llvmlite import ir
import ast
import logging
from typing import Any
from dataclasses import dataclass
from .helper import HelperHandlerRegistry, handle_helper_call
from .type_deducer import ctypes_to_ir
from .binary_ops import handle_binary_op
from .expr_pass import eval_expr, handle_expr
logger = logging.getLogger(__name__)
@dataclass
class LocalSymbol:
var: ir.AllocaInstr
ir_type: ir.Type
metadata: Any = None
def __iter__(self):
yield self.var
yield self.ir_type
yield self.metadata
def get_probe_string(func_node):
"""Extract the probe string from the decorator of the function node."""
# TODO: right now we have the whole string in the section decorator
# But later we can implement typed tuples for tracepoints and kprobes
# For helper functions, we return "helper"
for decorator in func_node.decorator_list:
if isinstance(decorator, ast.Name) and decorator.id == "bpfglobal":
return None
if isinstance(decorator, ast.Call) and isinstance(decorator.func, ast.Name):
if decorator.func.id == "section" and len(decorator.args) == 1:
arg = decorator.args[0]
if isinstance(arg, ast.Constant) and isinstance(arg.value, str):
return arg.value
return "helper"
def handle_assign(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
):
"""Handle assignment statements in the function body."""
if len(stmt.targets) != 1:
print("Unsupported multiassignment")
return
num_types = ("c_int32", "c_int64", "c_uint32", "c_uint64")
target = stmt.targets[0]
print(f"Handling assignment to {ast.dump(target)}")
if not isinstance(target, ast.Name) and not isinstance(target, ast.Attribute):
print("Unsupported assignment target")
return
var_name = target.id if isinstance(target, ast.Name) else target.value.id
rval = stmt.value
if isinstance(target, ast.Attribute):
# struct field assignment
field_name = target.attr
if var_name in local_sym_tab:
struct_type = local_sym_tab[var_name].metadata
struct_info = structs_sym_tab[struct_type]
if field_name in struct_info.fields:
field_ptr = struct_info.gep(
builder, local_sym_tab[var_name].var, field_name
)
val = eval_expr(
func,
module,
builder,
rval,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if isinstance(struct_info.field_type(field_name), ir.ArrayType) and val[
1
] == ir.PointerType(ir.IntType(8)):
# TODO: Figure it out, not a priority rn
# Special case for string assignment to char array
# str_len = struct_info["field_types"][field_idx].count
# assign_string_to_array(builder, field_ptr, val[0], str_len)
# print(f"Assigned to struct field {var_name}.{field_name}")
pass
if val is None:
print("Failed to evaluate struct field assignment")
return
print(field_ptr)
builder.store(val[0], field_ptr)
print(f"Assigned to struct field {var_name}.{field_name}")
return
elif isinstance(rval, ast.Constant):
if isinstance(rval.value, bool):
if rval.value:
builder.store(
ir.Constant(ir.IntType(1), 1), local_sym_tab[var_name].var
)
else:
builder.store(
ir.Constant(ir.IntType(1), 0), local_sym_tab[var_name].var
)
print(f"Assigned constant {rval.value} to {var_name}")
elif isinstance(rval.value, int):
# Assume c_int64 for now
# var = builder.alloca(ir.IntType(64), name=var_name)
# var.align = 8
builder.store(
ir.Constant(ir.IntType(64), rval.value), local_sym_tab[var_name].var
)
print(f"Assigned constant {rval.value} to {var_name}")
elif isinstance(rval.value, str):
str_val = rval.value.encode("utf-8") + b"\x00"
str_const = ir.Constant(
ir.ArrayType(ir.IntType(8), len(str_val)), bytearray(str_val)
)
global_str = ir.GlobalVariable(
module, str_const.type, name=f"{var_name}_str"
)
global_str.linkage = "internal"
global_str.global_constant = True
global_str.initializer = str_const
str_ptr = builder.bitcast(global_str, ir.PointerType(ir.IntType(8)))
builder.store(str_ptr, local_sym_tab[var_name].var)
print(f"Assigned string constant '{rval.value}' to {var_name}")
else:
print("Unsupported constant type")
elif isinstance(rval, ast.Call):
if isinstance(rval.func, ast.Name):
call_type = rval.func.id
print(f"Assignment call type: {call_type}")
if (
call_type in num_types
and len(rval.args) == 1
and isinstance(rval.args[0], ast.Constant)
and isinstance(rval.args[0].value, int)
):
ir_type = ctypes_to_ir(call_type)
# var = builder.alloca(ir_type, name=var_name)
# var.align = ir_type.width // 8
builder.store(
ir.Constant(ir_type, rval.args[0].value),
local_sym_tab[var_name].var,
)
print(
f"Assigned {call_type} constant "
f"{rval.args[0].value} to {var_name}"
)
elif HelperHandlerRegistry.has_handler(call_type):
# var = builder.alloca(ir.IntType(64), name=var_name)
# var.align = 8
val = handle_helper_call(
rval,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
builder.store(val[0], local_sym_tab[var_name].var)
print(f"Assigned constant {rval.func.id} to {var_name}")
elif call_type == "deref" and len(rval.args) == 1:
print(f"Handling deref assignment {ast.dump(rval)}")
val = eval_expr(
func,
module,
builder,
rval,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if val is None:
print("Failed to evaluate deref argument")
return
print(f"Dereferenced value: {val}, storing in {var_name}")
builder.store(val[0], local_sym_tab[var_name].var)
print(f"Dereferenced and assigned to {var_name}")
elif call_type in structs_sym_tab and len(rval.args) == 0:
struct_info = structs_sym_tab[call_type]
ir_type = struct_info.ir_type
# var = builder.alloca(ir_type, name=var_name)
# Null init
builder.store(ir.Constant(ir_type, None), local_sym_tab[var_name].var)
print(f"Assigned struct {call_type} to {var_name}")
else:
print(f"Unsupported assignment call type: {call_type}")
elif isinstance(rval.func, ast.Attribute):
print(f"Assignment call attribute: {ast.dump(rval.func)}")
if isinstance(rval.func.value, ast.Name):
# TODO: probably a struct access
print(f"TODO STRUCT ACCESS {ast.dump(rval)}")
elif isinstance(rval.func.value, ast.Call) and isinstance(
rval.func.value.func, ast.Name
):
map_name = rval.func.value.func.id
method_name = rval.func.attr
if map_name in map_sym_tab:
if HelperHandlerRegistry.has_handler(method_name):
val = handle_helper_call(
rval,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
# var = builder.alloca(ir.IntType(64), name=var_name)
# var.align = 8
builder.store(val[0], local_sym_tab[var_name].var)
else:
print("Unsupported assignment call structure")
else:
print("Unsupported assignment call function type")
elif isinstance(rval, ast.BinOp):
handle_binary_op(
rval, module, builder, var_name, local_sym_tab, map_sym_tab, func
)
else:
print("Unsupported assignment value type")
def handle_cond(func, module, builder, cond, local_sym_tab, map_sym_tab):
if isinstance(cond, ast.Constant):
if isinstance(cond.value, bool):
return ir.Constant(ir.IntType(1), int(cond.value))
elif isinstance(cond.value, int):
return ir.Constant(ir.IntType(1), int(bool(cond.value)))
else:
print("Unsupported constant type in condition")
return None
elif isinstance(cond, ast.Name):
if cond.id in local_sym_tab:
var = local_sym_tab[cond.id].var
val = builder.load(var)
if val.type != ir.IntType(1):
# Convert nonzero values to true, zero to false
if isinstance(val.type, ir.PointerType):
# For pointer types, compare with null pointer
zero = ir.Constant(val.type, None)
else:
# For integer types, compare with zero
zero = ir.Constant(val.type, 0)
val = builder.icmp_signed("!=", val, zero)
return val
else:
print(f"Undefined variable {cond.id} in condition")
return None
elif isinstance(cond, ast.Compare):
lhs = eval_expr(func, module, builder, cond.left, local_sym_tab, map_sym_tab)[0]
if len(cond.ops) != 1 or len(cond.comparators) != 1:
print("Unsupported complex comparison")
return None
rhs = eval_expr(
func, module, builder, cond.comparators[0], local_sym_tab, map_sym_tab
)[0]
op = cond.ops[0]
if lhs.type != rhs.type:
if isinstance(lhs.type, ir.IntType) and isinstance(rhs.type, ir.IntType):
# Extend the smaller type to the larger type
if lhs.type.width < rhs.type.width:
lhs = builder.sext(lhs, rhs.type)
elif lhs.type.width > rhs.type.width:
rhs = builder.sext(rhs, lhs.type)
else:
print("Type mismatch in comparison")
return None
if isinstance(op, ast.Eq):
return builder.icmp_signed("==", lhs, rhs)
elif isinstance(op, ast.NotEq):
return builder.icmp_signed("!=", lhs, rhs)
elif isinstance(op, ast.Lt):
return builder.icmp_signed("<", lhs, rhs)
elif isinstance(op, ast.LtE):
return builder.icmp_signed("<=", lhs, rhs)
elif isinstance(op, ast.Gt):
return builder.icmp_signed(">", lhs, rhs)
elif isinstance(op, ast.GtE):
return builder.icmp_signed(">=", lhs, rhs)
else:
print("Unsupported comparison operator")
return None
else:
print("Unsupported condition expression")
return None
def handle_if(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab=None
):
"""Handle if statements in the function body."""
print("Handling if statement")
# start = builder.block.parent
then_block = func.append_basic_block(name="if.then")
merge_block = func.append_basic_block(name="if.end")
if stmt.orelse:
else_block = func.append_basic_block(name="if.else")
else:
else_block = None
cond = handle_cond(func, module, builder, stmt.test, local_sym_tab, map_sym_tab)
if else_block:
builder.cbranch(cond, then_block, else_block)
else:
builder.cbranch(cond, then_block, merge_block)
builder.position_at_end(then_block)
for s in stmt.body:
process_stmt(
func, module, builder, s, local_sym_tab, map_sym_tab, structs_sym_tab, False
)
if not builder.block.is_terminated:
builder.branch(merge_block)
if else_block:
builder.position_at_end(else_block)
for s in stmt.orelse:
process_stmt(
func,
module,
builder,
s,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
False,
)
if not builder.block.is_terminated:
builder.branch(merge_block)
builder.position_at_end(merge_block)
def process_stmt(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
did_return,
ret_type=ir.IntType(64),
):
print(f"Processing statement: {ast.dump(stmt)}")
if isinstance(stmt, ast.Expr):
handle_expr(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
elif isinstance(stmt, ast.Assign):
handle_assign(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
)
elif isinstance(stmt, ast.AugAssign):
raise SyntaxError("Augmented assignment not supported")
elif isinstance(stmt, ast.If):
handle_if(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
)
elif isinstance(stmt, ast.Return):
if stmt.value is None:
builder.ret(ir.Constant(ir.IntType(32), 0))
did_return = True
elif (
isinstance(stmt.value, ast.Call)
and isinstance(stmt.value.func, ast.Name)
and len(stmt.value.args) == 1
and isinstance(stmt.value.args[0], ast.Constant)
and isinstance(stmt.value.args[0].value, int)
):
call_type = stmt.value.func.id
if ctypes_to_ir(call_type) != ret_type:
raise ValueError(
"Return type mismatch: expected"
f"{ctypes_to_ir(call_type)}, got {call_type}"
)
else:
builder.ret(ir.Constant(ret_type, stmt.value.args[0].value))
did_return = True
elif isinstance(stmt.value, ast.Name):
if stmt.value.id == "XDP_PASS":
builder.ret(ir.Constant(ret_type, 2))
did_return = True
elif stmt.value.id == "XDP_DROP":
builder.ret(ir.Constant(ret_type, 1))
did_return = True
else:
raise ValueError("Failed to evaluate return expression")
else:
raise ValueError("Unsupported return value")
return did_return
def allocate_mem(
module, builder, body, func, ret_type, map_sym_tab, local_sym_tab, structs_sym_tab
):
for stmt in body:
has_metadata = False
if isinstance(stmt, ast.If):
if stmt.body:
local_sym_tab = allocate_mem(
module,
builder,
stmt.body,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
if stmt.orelse:
local_sym_tab = allocate_mem(
module,
builder,
stmt.orelse,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
elif isinstance(stmt, ast.Assign):
if len(stmt.targets) != 1:
print("Unsupported multiassignment")
continue
target = stmt.targets[0]
if not isinstance(target, ast.Name):
print("Unsupported assignment target")
continue
var_name = target.id
rval = stmt.value
if isinstance(rval, ast.Call):
if isinstance(rval.func, ast.Name):
call_type = rval.func.id
if call_type in ("c_int32", "c_int64", "c_uint32", "c_uint64"):
ir_type = ctypes_to_ir(call_type)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} of type {call_type}")
elif HelperHandlerRegistry.has_handler(call_type):
# Assume return type is int64 for now
ir_type = ir.IntType(64)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} for helper")
elif call_type == "deref" and len(rval.args) == 1:
# Assume return type is int64 for now
ir_type = ir.IntType(64)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} for deref")
elif call_type in structs_sym_tab:
struct_info = structs_sym_tab[call_type]
ir_type = struct_info.ir_type
var = builder.alloca(ir_type, name=var_name)
has_metadata = True
print(
f"Pre-allocated variable {var_name} "
f"for struct {call_type}"
)
elif isinstance(rval.func, ast.Attribute):
ir_type = ir.PointerType(ir.IntType(64))
var = builder.alloca(ir_type, name=var_name)
# var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} for map")
else:
print("Unsupported assignment call function type")
continue
elif isinstance(rval, ast.Constant):
if isinstance(rval.value, bool):
ir_type = ir.IntType(1)
var = builder.alloca(ir_type, name=var_name)
var.align = 1
print(f"Pre-allocated variable {var_name} of type c_bool")
elif isinstance(rval.value, int):
# Assume c_int64 for now
ir_type = ir.IntType(64)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} of type c_int64")
elif isinstance(rval.value, str):
ir_type = ir.PointerType(ir.IntType(8))
var = builder.alloca(ir_type, name=var_name)
var.align = 8
print(f"Pre-allocated variable {var_name} of type string")
else:
print("Unsupported constant type")
continue
elif isinstance(rval, ast.BinOp):
# Assume c_int64 for now
ir_type = ir.IntType(64)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} of type c_int64")
else:
print("Unsupported assignment value type")
continue
if has_metadata:
local_sym_tab[var_name] = LocalSymbol(var, ir_type, call_type)
else:
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
return local_sym_tab
def process_func_body(
module, builder, func_node, func, ret_type, map_sym_tab, structs_sym_tab
):
"""Process the body of a bpf function"""
# TODO: A lot. We just have print -> bpf_trace_printk for now
did_return = False
local_sym_tab = {}
# pre-allocate dynamic variables
local_sym_tab = allocate_mem(
module,
builder,
func_node.body,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
print(f"Local symbol table: {local_sym_tab.keys()}")
for stmt in func_node.body:
did_return = process_stmt(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
did_return,
ret_type,
)
if not did_return:
builder.ret(ir.Constant(ir.IntType(32), 0))
def process_bpf_chunk(func_node, module, return_type, map_sym_tab, structs_sym_tab):
"""Process a single BPF chunk (function) and emit corresponding LLVM IR."""
func_name = func_node.name
ret_type = return_type
# TODO: parse parameters
param_types = []
if func_node.args.args:
# Assume first arg to be ctx
param_types.append(ir.PointerType())
func_ty = ir.FunctionType(ret_type, param_types)
func = ir.Function(module, func_ty, func_name)
func.linkage = "dso_local"
func.attributes.add("nounwind")
func.attributes.add("noinline")
func.attributes.add("optnone")
if func_node.args.args:
# Only look at the first argument for now
param = func.args[0]
param.add_attribute("nocapture")
probe_string = get_probe_string(func_node)
if probe_string is not None:
func.section = probe_string
block = func.append_basic_block(name="entry")
builder = ir.IRBuilder(block)
process_func_body(
module, builder, func_node, func, ret_type, map_sym_tab, structs_sym_tab
)
return func
def func_proc(tree, module, chunks, map_sym_tab, structs_sym_tab):
for func_node in chunks:
is_global = False
for decorator in func_node.decorator_list:
if isinstance(decorator, ast.Name) and decorator.id in (
"map",
"bpfglobal",
"struct",
):
is_global = True
break
if is_global:
continue
func_type = get_probe_string(func_node)
print(f"Found probe_string of {func_node.name}: {func_type}")
process_bpf_chunk(
func_node,
module,
ctypes_to_ir(infer_return_type(func_node)),
map_sym_tab,
structs_sym_tab,
)
def infer_return_type(func_node: ast.FunctionDef):
if not isinstance(func_node, (ast.FunctionDef, ast.AsyncFunctionDef)):
raise TypeError("Expected ast.FunctionDef")
if func_node.returns is not None:
try:
return ast.unparse(func_node.returns)
except Exception:
node = func_node.returns
if isinstance(node, ast.Name):
return node.id
if isinstance(node, ast.Attribute):
return getattr(node, "attr", type(node).__name__)
try:
return str(node)
except Exception:
return type(node).__name__
found_type = None
def _expr_type(e):
if e is None:
return "None"
if isinstance(e, ast.Constant):
return type(e.value).__name__
if isinstance(e, ast.Name):
return e.id
if isinstance(e, ast.Call):
f = e.func
if isinstance(f, ast.Name):
return f.id
if isinstance(f, ast.Attribute):
try:
return ast.unparse(f)
except Exception:
return getattr(f, "attr", type(f).__name__)
try:
return ast.unparse(f)
except Exception:
return type(f).__name__
if isinstance(e, ast.Attribute):
try:
return ast.unparse(e)
except Exception:
return getattr(e, "attr", type(e).__name__)
try:
return ast.unparse(e)
except Exception:
return type(e).__name__
for walked_node in ast.walk(func_node):
if isinstance(walked_node, ast.Return):
t = _expr_type(walked_node.value)
if found_type is None:
found_type = t
elif found_type != t:
raise ValueError(f"Conflicting return types: {found_type} vs {t}")
return found_type or "None"
# For string assignment to fixed-size arrays
def assign_string_to_array(builder, target_array_ptr, source_string_ptr, array_length):
"""
Copy a string (i8*) to a fixed-size array ([N x i8]*)
"""
# Create a loop to copy characters one by one
# entry_block = builder.block
copy_block = builder.append_basic_block("copy_char")
end_block = builder.append_basic_block("copy_end")
# Create loop counter
i = builder.alloca(ir.IntType(32))
builder.store(ir.Constant(ir.IntType(32), 0), i)
# Start the loop
builder.branch(copy_block)
# Copy loop
builder.position_at_end(copy_block)
idx = builder.load(i)
in_bounds = builder.icmp_unsigned(
"<", idx, ir.Constant(ir.IntType(32), array_length)
)
builder.cbranch(in_bounds, copy_block, end_block)
with builder.if_then(in_bounds):
# Load character from source
src_ptr = builder.gep(source_string_ptr, [idx])
char = builder.load(src_ptr)
# Store character in target
dst_ptr = builder.gep(target_array_ptr, [ir.Constant(ir.IntType(32), 0), idx])
builder.store(char, dst_ptr)
# Increment counter
next_idx = builder.add(idx, ir.Constant(ir.IntType(32), 1))
builder.store(next_idx, i)
builder.position_at_end(end_block)
# Ensure null termination
last_idx = ir.Constant(ir.IntType(32), array_length - 1)
null_ptr = builder.gep(target_array_ptr, [ir.Constant(ir.IntType(32), 0), last_idx])
builder.store(ir.Constant(ir.IntType(8), 0), null_ptr)

View File

@ -1,121 +1,8 @@
from llvmlite import ir from llvmlite import ir
import ast import ast
from logging import Logger
import logging
from .type_deducer import ctypes_to_ir
logger: Logger = logging.getLogger(__name__) def emit_globals(module: ir.Module, names: list[str]):
# TODO: this is going to be a huge fuck of a headache in the future.
global_sym_tab = []
def populate_global_symbol_table(tree, module: ir.Module):
for node in tree.body:
if isinstance(node, ast.FunctionDef):
for dec in node.decorator_list:
if (
isinstance(dec, ast.Call)
and isinstance(dec.func, ast.Name)
and dec.func.id == "section"
and len(dec.args) == 1
and isinstance(dec.args[0], ast.Constant)
and isinstance(dec.args[0].value, str)
):
global_sym_tab.append(node)
elif isinstance(dec, ast.Name) and dec.id == "bpfglobal":
global_sym_tab.append(node)
elif isinstance(dec, ast.Name) and dec.id == "map":
global_sym_tab.append(node)
return False
def emit_global(module: ir.Module, node, name):
logger.info(f"global identifier {name} processing")
# deduce LLVM type from the annotated return
if not isinstance(node.returns, ast.Name):
raise ValueError(f"Unsupported return annotation {ast.dump(node.returns)}")
ty = ctypes_to_ir(node.returns.id)
# extract the return expression
# TODO: turn this return extractor into a generic function I can use everywhere.
ret_stmt = node.body[0]
if not isinstance(ret_stmt, ast.Return) or ret_stmt.value is None:
raise ValueError(f"Global '{name}' has no valid return")
init_val = ret_stmt.value
# simple constant like "return 0"
if isinstance(init_val, ast.Constant):
llvm_init = ir.Constant(ty, init_val.value)
# variable reference like "return SOME_CONST"
elif isinstance(init_val, ast.Name):
# need symbol resolution here, stub as 0 for now
raise ValueError(f"Name reference {init_val.id} not yet supported")
# constructor call like "return c_int64(0)" or dataclass(...)
elif isinstance(init_val, ast.Call):
if len(init_val.args) >= 1 and isinstance(init_val.args[0], ast.Constant):
llvm_init = ir.Constant(ty, init_val.args[0].value)
else:
logger.info("Defaulting to zero as no constant argument found")
llvm_init = ir.Constant(ty, 0)
else:
raise ValueError(f"Unsupported return expr {ast.dump(init_val)}")
gvar = ir.GlobalVariable(module, ty, name=name)
gvar.initializer = llvm_init
gvar.align = 8
gvar.linkage = "dso_local"
gvar.global_constant = False
return gvar
def globals_processing(tree, module):
"""Process stuff decorated with @bpf and @bpfglobal except license and return the section name"""
globals_sym_tab = []
for node in tree.body:
# Skip non-assignment and non-function nodes
if not (isinstance(node, ast.FunctionDef)):
continue
# Get the name based on node type
if isinstance(node, ast.FunctionDef):
name = node.name
else:
continue
# Check for duplicate names
if name in globals_sym_tab:
raise SyntaxError(f"ERROR: Global name '{name}' previously defined")
else:
globals_sym_tab.append(name)
if isinstance(node, ast.FunctionDef) and node.name != "LICENSE":
decorators = [
dec.id for dec in node.decorator_list if isinstance(dec, ast.Name)
]
if "bpf" in decorators and "bpfglobal" in decorators:
if (
len(node.body) == 1
and isinstance(node.body[0], ast.Return)
and node.body[0].value is not None
and isinstance(
node.body[0].value, (ast.Constant, ast.Name, ast.Call)
)
):
emit_global(module, node, name)
else:
raise SyntaxError(f"ERROR: Invalid syntax for {name} global")
return None
def emit_llvm_compiler_used(module: ir.Module, names: list[str]):
""" """
Emit the @llvm.compiler.used global given a list of function/global names. Emit the @llvm.compiler.used global given a list of function/global names.
""" """
@ -137,7 +24,7 @@ def emit_llvm_compiler_used(module: ir.Module, names: list[str]):
gv.section = "llvm.metadata" gv.section = "llvm.metadata"
def globals_list_creation(tree, module: ir.Module): def globals_processing(tree, module: ir.Module):
collected = ["LICENSE"] collected = ["LICENSE"]
for node in tree.body: for node in tree.body:
@ -153,11 +40,10 @@ def globals_list_creation(tree, module: ir.Module):
): ):
collected.append(node.name) collected.append(node.name)
# NOTE: all globals other than elif isinstance(dec, ast.Name) and dec.id == "bpfglobal":
# elif isinstance(dec, ast.Name) and dec.id == "bpfglobal": collected.append(node.name)
# collected.append(node.name)
elif isinstance(dec, ast.Name) and dec.id == "map": elif isinstance(dec, ast.Name) and dec.id == "map":
collected.append(node.name) collected.append(node.name)
emit_llvm_compiler_used(module, collected) emit_globals(module, collected)

View File

@ -1,97 +1,13 @@
from .helper_registry import HelperHandlerRegistry from .helper_utils import HelperHandlerRegistry
from .helper_utils import reset_scratch_pool from .bpf_helper_handler import handle_helper_call
from .bpf_helper_handler import ( from .helpers import ktime, pid, deref, XDP_DROP, XDP_PASS
handle_helper_call,
emit_probe_read_kernel_str_call,
emit_probe_read_kernel_call,
)
from .helpers import (
ktime,
pid,
deref,
comm,
probe_read_str,
random,
probe_read,
smp_processor_id,
uid,
skb_store_bytes,
get_current_cgroup_id,
get_stack,
XDP_DROP,
XDP_PASS,
)
# Register the helper handler with expr module
def _register_helper_handler():
"""Register helper call handler with the expression evaluator"""
from pythonbpf.expr.expr_pass import CallHandlerRegistry
def helper_call_handler(
call, module, builder, func, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Check if call is a helper and handle it"""
import ast
# Check for direct helper calls (e.g., ktime(), print())
if isinstance(call.func, ast.Name):
if HelperHandlerRegistry.has_handler(call.func.id):
return handle_helper_call(
call,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
# Check for method calls (e.g., map.lookup())
elif isinstance(call.func, ast.Attribute):
method_name = call.func.attr
# Handle: my_map.lookup(key)
if isinstance(call.func.value, ast.Name):
obj_name = call.func.value.id
if map_sym_tab and obj_name in map_sym_tab:
if HelperHandlerRegistry.has_handler(method_name):
return handle_helper_call(
call,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
return None
CallHandlerRegistry.set_handler(helper_call_handler)
# Register on module import
_register_helper_handler()
__all__ = [ __all__ = [
"HelperHandlerRegistry", "HelperHandlerRegistry",
"reset_scratch_pool",
"handle_helper_call", "handle_helper_call",
"emit_probe_read_kernel_str_call",
"emit_probe_read_kernel_call",
"get_current_cgroup_id",
"ktime", "ktime",
"pid", "pid",
"deref", "deref",
"comm",
"probe_read_str",
"random",
"probe_read",
"smp_processor_id",
"uid",
"skb_store_bytes",
"get_stack",
"XDP_DROP", "XDP_DROP",
"XDP_PASS", "XDP_PASS",
] ]

File diff suppressed because it is too large Load Diff

View File

@ -1,61 +0,0 @@
from dataclasses import dataclass
from llvmlite import ir
from typing import Callable
@dataclass
class HelperSignature:
"""Signature of a BPF helper function"""
arg_types: list[ir.Type]
return_type: ir.Type
func: Callable
class HelperHandlerRegistry:
"""Registry for BPF helpers"""
_handlers: dict[str, HelperSignature] = {}
@classmethod
def register(cls, helper_name, param_types=None, return_type=None):
"""Decorator to register a handler function for a helper"""
def decorator(func):
helper_sig = HelperSignature(
arg_types=param_types, return_type=return_type, func=func
)
cls._handlers[helper_name] = helper_sig
return func
return decorator
@classmethod
def get_handler(cls, helper_name):
"""Get the handler function for a helper"""
handler = cls._handlers.get(helper_name)
return handler.func if handler else None
@classmethod
def has_handler(cls, helper_name):
"""Check if a handler function is registered for a helper"""
return helper_name in cls._handlers
@classmethod
def get_signature(cls, helper_name):
"""Get the signature of a helper function"""
return cls._handlers.get(helper_name)
@classmethod
def get_param_type(cls, helper_name, index):
"""Get the type of a parameter of a helper function by the index"""
signature = cls.get_signature(helper_name)
if signature and signature.arg_types and 0 <= index < len(signature.arg_types):
return signature.arg_types[index]
return None
@classmethod
def get_return_type(cls, helper_name):
"""Get the return type of a helper function"""
signature = cls.get_signature(helper_name)
return signature.return_type if signature else None

View File

@ -1,71 +1,37 @@
import ast import ast
import logging import logging
from collections.abc import Callable
from llvmlite import ir from llvmlite import ir
from pythonbpf.expr import ( from pythonbpf.expr_pass import eval_expr
get_operand_value,
eval_expr,
access_struct_field,
)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class ScratchPoolManager: class HelperHandlerRegistry:
"""Manage the temporary helper variables in local_sym_tab""" """Registry for BPF helpers"""
def __init__(self): _handlers: dict[str, Callable] = {}
self._counters = {}
@property @classmethod
def counter(self): def register(cls, helper_name):
return sum(self._counters.values()) """Decorator to register a handler function for a helper"""
def reset(self): def decorator(func):
self._counters.clear() cls._handlers[helper_name] = func
logger.debug("Scratch pool counter reset to 0") return func
def _get_type_name(self, ir_type): return decorator
if isinstance(ir_type, ir.PointerType):
return "ptr"
elif isinstance(ir_type, ir.IntType):
return f"i{ir_type.width}"
elif isinstance(ir_type, ir.ArrayType):
return f"[{ir_type.count}x{self._get_type_name(ir_type.element)}]"
else:
return str(ir_type).replace(" ", "")
def get_next_temp(self, local_sym_tab, expected_type=None): @classmethod
# Default to i64 if no expected type provided def get_handler(cls, helper_name):
type_name = self._get_type_name(expected_type) if expected_type else "i64" """Get the handler function for a helper"""
if type_name not in self._counters: return cls._handlers.get(helper_name)
self._counters[type_name] = 0
counter = self._counters[type_name] @classmethod
temp_name = f"__helper_temp_{type_name}_{counter}" def has_handler(cls, helper_name):
self._counters[type_name] += 1 """Check if a handler function is registered for a helper"""
return helper_name in cls._handlers
if temp_name not in local_sym_tab:
raise ValueError(
f"Scratch pool exhausted or inadequate: {temp_name}. "
f"Type: {type_name} Counter: {counter}"
)
logger.debug(f"Using {temp_name} for type {type_name}")
return local_sym_tab[temp_name].var, temp_name
_temp_pool_manager = ScratchPoolManager() # Singleton instance
def reset_scratch_pool():
"""Reset the scratch pool counter"""
_temp_pool_manager.reset()
# ============================================================================
# Argument Preparation
# ============================================================================
def get_var_ptr_from_name(var_name, local_sym_tab): def get_var_ptr_from_name(var_name, local_sym_tab):
@ -75,97 +41,27 @@ def get_var_ptr_from_name(var_name, local_sym_tab):
raise ValueError(f"Variable '{var_name}' not found in local symbol table") raise ValueError(f"Variable '{var_name}' not found in local symbol table")
def create_int_constant_ptr(value, builder, local_sym_tab, int_width=64): def create_int_constant_ptr(value, builder, int_width=64):
"""Create a pointer to an integer constant.""" """Create a pointer to an integer constant."""
# Default to 64-bit integer
int_type = ir.IntType(int_width) int_type = ir.IntType(int_width)
ptr, temp_name = _temp_pool_manager.get_next_temp(local_sym_tab, int_type) ptr = builder.alloca(int_type)
logger.info(f"Using temp variable '{temp_name}' for int constant {value}") ptr.align = int_type.width // 8
const_val = ir.Constant(int_type, value) builder.store(ir.Constant(int_type, value), ptr)
builder.store(const_val, ptr)
return ptr return ptr
def get_or_create_ptr_from_arg( def get_or_create_ptr_from_arg(arg, builder, local_sym_tab):
func,
module,
arg,
builder,
local_sym_tab,
map_sym_tab,
struct_sym_tab=None,
expected_type=None,
):
"""Extract or create pointer from the call arguments.""" """Extract or create pointer from the call arguments."""
logger.info(f"Getting pointer from arg: {ast.dump(arg)}")
sz = None
if isinstance(arg, ast.Name): if isinstance(arg, ast.Name):
# Stack space is already allocated
ptr = get_var_ptr_from_name(arg.id, local_sym_tab) ptr = get_var_ptr_from_name(arg.id, local_sym_tab)
elif isinstance(arg, ast.Constant) and isinstance(arg.value, int): elif isinstance(arg, ast.Constant) and isinstance(arg.value, int):
int_width = 64 # Default to i64 ptr = create_int_constant_ptr(arg.value, builder)
if expected_type and isinstance(expected_type, ir.IntType):
int_width = expected_type.width
ptr = create_int_constant_ptr(arg.value, builder, local_sym_tab, int_width)
elif isinstance(arg, ast.Attribute):
# A struct field
struct_name = arg.value.id
field_name = arg.attr
if not local_sym_tab or struct_name not in local_sym_tab:
raise ValueError(f"Struct '{struct_name}' not found")
struct_type = local_sym_tab[struct_name].metadata
if not struct_sym_tab or struct_type not in struct_sym_tab:
raise ValueError(f"Struct type '{struct_type}' not found")
struct_info = struct_sym_tab[struct_type]
if field_name not in struct_info.fields:
raise ValueError(
f"Field '{field_name}' not found in struct '{struct_name}'"
)
field_type = struct_info.field_type(field_name)
struct_ptr = local_sym_tab[struct_name].var
# Special handling for char arrays
if (
isinstance(field_type, ir.ArrayType)
and isinstance(field_type.element, ir.IntType)
and field_type.element.width == 8
):
ptr, sz = get_char_array_ptr_and_size(
arg, builder, local_sym_tab, struct_sym_tab, func
)
if not ptr:
raise ValueError("Failed to get char array pointer from struct field")
else:
ptr = struct_info.gep(builder, struct_ptr, field_name)
else: else:
# NOTE: For any integer expression reaching this branch, it is probably a struct field or a binop raise NotImplementedError(
# Evaluate the expression and store the result in a temp variable "Only simple variable names are supported as args in map helpers."
val = get_operand_value(
func, module, arg, builder, local_sym_tab, map_sym_tab, struct_sym_tab
) )
if val is None:
raise ValueError("Failed to evaluate expression for helper arg.")
ptr, temp_name = _temp_pool_manager.get_next_temp(local_sym_tab, expected_type)
logger.info(f"Using temp variable '{temp_name}' for expression result")
if (
isinstance(val.type, ir.IntType)
and expected_type
and val.type.width > expected_type.width
):
val = builder.trunc(val, expected_type)
builder.store(val, ptr)
# NOTE: For char arrays, also return size
if sz:
return ptr, sz
return ptr return ptr
@ -188,6 +84,204 @@ def get_flags_val(arg, builder, local_sym_tab):
) )
def simple_string_print(string_value, module, builder, func):
"""Prepare arguments for bpf_printk from a simple string value"""
fmt_str = string_value + "\n\0"
fmt_ptr = _create_format_string_global(fmt_str, func, module, builder)
args = [fmt_ptr, ir.Constant(ir.IntType(32), len(fmt_str))]
return args
def handle_fstring_print(
joined_str,
module,
builder,
func,
local_sym_tab=None,
struct_sym_tab=None,
):
"""Handle f-string formatting for bpf_printk emitter."""
fmt_parts = []
exprs = []
for value in joined_str.values:
logger.debug(f"Processing f-string value: {ast.dump(value)}")
if isinstance(value, ast.Constant):
_process_constant_in_fstring(value, fmt_parts, exprs)
elif isinstance(value, ast.FormattedValue):
_process_fval(
value,
fmt_parts,
exprs,
local_sym_tab,
struct_sym_tab,
)
else:
raise NotImplementedError(f"Unsupported f-string value type: {type(value)}")
fmt_str = "".join(fmt_parts)
args = simple_string_print(fmt_str, module, builder, func)
# NOTE: Process expressions (limited to 3 due to BPF constraints)
if len(exprs) > 3:
logger.warning("bpf_printk supports up to 3 args, extra args will be ignored.")
for expr in exprs[:3]:
arg_value = _prepare_expr_args(
expr,
func,
module,
builder,
local_sym_tab,
struct_sym_tab,
)
args.append(arg_value)
return args
def _process_constant_in_fstring(cst, fmt_parts, exprs):
"""Process constant values in f-string."""
if isinstance(cst.value, str):
fmt_parts.append(cst.value)
elif isinstance(cst.value, int):
fmt_parts.append("%lld")
exprs.append(ir.Constant(ir.IntType(64), cst.value))
else:
raise NotImplementedError(
f"Unsupported constant type in f-string: {type(cst.value)}"
)
def _process_fval(fval, fmt_parts, exprs, local_sym_tab, struct_sym_tab):
"""Process formatted values in f-string."""
logger.debug(f"Processing formatted value: {ast.dump(fval)}")
if isinstance(fval.value, ast.Name):
_process_name_in_fval(fval.value, fmt_parts, exprs, local_sym_tab)
elif isinstance(fval.value, ast.Attribute):
_process_attr_in_fval(
fval.value,
fmt_parts,
exprs,
local_sym_tab,
struct_sym_tab,
)
else:
raise NotImplementedError(
f"Unsupported formatted value in f-string: {type(fval.value)}"
)
def _process_name_in_fval(name_node, fmt_parts, exprs, local_sym_tab):
"""Process name nodes in formatted values."""
if local_sym_tab and name_node.id in local_sym_tab:
_, var_type, tmp = local_sym_tab[name_node.id]
_populate_fval(var_type, name_node, fmt_parts, exprs)
def _process_attr_in_fval(attr_node, fmt_parts, exprs, local_sym_tab, struct_sym_tab):
"""Process attribute nodes in formatted values."""
if (
isinstance(attr_node.value, ast.Name)
and local_sym_tab
and attr_node.value.id in local_sym_tab
):
var_name = attr_node.value.id
field_name = attr_node.attr
var_type = local_sym_tab[var_name].metadata
if var_type not in struct_sym_tab:
raise ValueError(
f"Struct '{var_type}' for '{var_name}' not in symbol table"
)
struct_info = struct_sym_tab[var_type]
if field_name not in struct_info.fields:
raise ValueError(f"Field '{field_name}' not found in struct '{var_type}'")
field_type = struct_info.field_type(field_name)
_populate_fval(field_type, attr_node, fmt_parts, exprs)
else:
raise NotImplementedError(
"Only simple attribute on local vars is supported in f-strings."
)
def _populate_fval(ftype, node, fmt_parts, exprs):
"""Populate format parts and expressions based on field type."""
if isinstance(ftype, ir.IntType):
# TODO: We print as signed integers only for now
if ftype.width == 64:
fmt_parts.append("%lld")
exprs.append(node)
elif ftype.width == 32:
fmt_parts.append("%d")
exprs.append(node)
else:
raise NotImplementedError(
f"Unsupported integer width in f-string: {ftype.width}"
)
elif ftype == ir.PointerType(ir.IntType(8)):
# NOTE: We assume i8* is a string
fmt_parts.append("%s")
exprs.append(node)
else:
raise NotImplementedError(f"Unsupported field type in f-string: {ftype}")
def _create_format_string_global(fmt_str, func, module, builder):
"""Create a global variable for the format string."""
fmt_name = f"{func.name}____fmt{func._fmt_counter}"
func._fmt_counter += 1
fmt_gvar = ir.GlobalVariable(
module, ir.ArrayType(ir.IntType(8), len(fmt_str)), name=fmt_name
)
fmt_gvar.global_constant = True
fmt_gvar.initializer = ir.Constant(
ir.ArrayType(ir.IntType(8), len(fmt_str)), bytearray(fmt_str.encode("utf8"))
)
fmt_gvar.linkage = "internal"
fmt_gvar.align = 1
return builder.bitcast(fmt_gvar, ir.PointerType())
def _prepare_expr_args(expr, func, module, builder, local_sym_tab, struct_sym_tab):
"""Evaluate and prepare an expression to use as an arg for bpf_printk."""
val, _ = eval_expr(
func,
module,
builder,
expr,
local_sym_tab,
None,
struct_sym_tab,
)
if val:
if isinstance(val.type, ir.PointerType):
val = builder.ptrtoint(val, ir.IntType(64))
elif isinstance(val.type, ir.IntType):
if val.type.width < 64:
val = builder.sext(val, ir.IntType(64))
else:
logger.warning(
"Only int and ptr supported in bpf_printk args. " "Others default to 0."
)
val = ir.Constant(ir.IntType(64), 0)
return val
else:
logger.warning(
"Failed to evaluate expression for bpf_printk argument. "
"It will be converted to 0."
)
return ir.Constant(ir.IntType(64), 0)
def get_data_ptr_and_size(data_arg, local_sym_tab, struct_sym_tab): def get_data_ptr_and_size(data_arg, local_sym_tab, struct_sym_tab):
"""Extract data pointer and size information for perf event output.""" """Extract data pointer and size information for perf event output."""
if isinstance(data_arg, ast.Name): if isinstance(data_arg, ast.Name):
@ -211,181 +305,3 @@ def get_data_ptr_and_size(data_arg, local_sym_tab, struct_sym_tab):
raise NotImplementedError( raise NotImplementedError(
"Only simple object names are supported as data in perf event output." "Only simple object names are supported as data in perf event output."
) )
def get_buffer_ptr_and_size(buf_arg, builder, local_sym_tab, struct_sym_tab):
"""Extract buffer pointer and size from either a struct field or variable."""
# Case 1: Struct field (obj.field)
if isinstance(buf_arg, ast.Attribute):
if not isinstance(buf_arg.value, ast.Name):
raise ValueError(
"Only simple struct field access supported (e.g., obj.field)"
)
struct_name = buf_arg.value.id
field_name = buf_arg.attr
# Lookup struct
if not local_sym_tab or struct_name not in local_sym_tab:
raise ValueError(f"Struct '{struct_name}' not found")
struct_type = local_sym_tab[struct_name].metadata
if not struct_sym_tab or struct_type not in struct_sym_tab:
raise ValueError(f"Struct type '{struct_type}' not found")
struct_info = struct_sym_tab[struct_type]
# Get field pointer and type
struct_ptr = local_sym_tab[struct_name].var
field_ptr = struct_info.gep(builder, struct_ptr, field_name)
field_type = struct_info.field_type(field_name)
if not isinstance(field_type, ir.ArrayType):
raise ValueError(f"Field '{field_name}' must be an array type")
return field_ptr, field_type.count
# Case 2: Variable name
elif isinstance(buf_arg, ast.Name):
var_name = buf_arg.id
if not local_sym_tab or var_name not in local_sym_tab:
raise ValueError(f"Variable '{var_name}' not found")
var_ptr = local_sym_tab[var_name].var
var_type = local_sym_tab[var_name].ir_type
if not isinstance(var_type, ir.ArrayType):
raise ValueError(f"Variable '{var_name}' must be an array type")
return var_ptr, var_type.count
else:
raise ValueError(
"comm expects either a struct field (obj.field) or variable name"
)
def get_char_array_ptr_and_size(
buf_arg, builder, local_sym_tab, struct_sym_tab, func=None
):
"""Get pointer to char array and its size."""
# Struct field: obj.field
if isinstance(buf_arg, ast.Attribute) and isinstance(buf_arg.value, ast.Name):
var_name = buf_arg.value.id
field_name = buf_arg.attr
if not (local_sym_tab and var_name in local_sym_tab):
raise ValueError(f"Variable '{var_name}' not found")
struct_ptr, struct_type, struct_metadata = local_sym_tab[var_name]
if not (struct_sym_tab and struct_metadata in struct_sym_tab):
raise ValueError(f"Struct type '{struct_metadata}' not found")
struct_info = struct_sym_tab[struct_metadata]
if field_name not in struct_info.fields:
raise ValueError(f"Field '{field_name}' not found")
field_type = struct_info.field_type(field_name)
if not _is_char_array(field_type):
logger.info(
"Field is not a char array, falling back to int or ptr detection"
)
return None, 0
# Check if char array
if not (
isinstance(field_type, ir.ArrayType)
and isinstance(field_type.element, ir.IntType)
and field_type.element.width == 8
):
logger.warning("Field is not a char array")
return None, 0
field_ptr, _ = access_struct_field(
builder,
struct_ptr,
struct_type,
struct_metadata,
field_name,
struct_sym_tab,
func,
)
# GEP to first element: [N x i8]* -> i8*
buf_ptr = builder.gep(
field_ptr,
[ir.Constant(ir.IntType(32), 0), ir.Constant(ir.IntType(32), 0)],
inbounds=True,
)
return buf_ptr, field_type.count
elif isinstance(buf_arg, ast.Name):
# NOTE: We shouldn't be doing this as we can't get size info
var_name = buf_arg.id
if not (local_sym_tab and var_name in local_sym_tab):
raise ValueError(f"Variable '{var_name}' not found")
var_ptr = local_sym_tab[var_name].var
var_type = local_sym_tab[var_name].ir_type
if not isinstance(var_type, ir.PointerType) or not isinstance(
var_type.pointee, ir.IntType(8)
):
raise ValueError("Expected str ptr variable")
return var_ptr, 256 # Size unknown for str ptr, using 256 as default
else:
raise ValueError("Expected struct field or variable name")
def _is_char_array(ir_type):
"""Check if IR type is [N x i8]."""
return (
isinstance(ir_type, ir.ArrayType)
and isinstance(ir_type.element, ir.IntType)
and ir_type.element.width == 8
)
def get_ptr_from_arg(
arg, func, module, builder, local_sym_tab, map_sym_tab, struct_sym_tab
):
"""Evaluate argument and return pointer value"""
result = eval_expr(
func, module, builder, arg, local_sym_tab, map_sym_tab, struct_sym_tab
)
if not result:
raise ValueError("Failed to evaluate argument")
val, val_type = result
if not isinstance(val_type, ir.PointerType):
raise ValueError(f"Expected pointer type, got {val_type}")
return val, val_type
def get_int_value_from_arg(
arg, func, module, builder, local_sym_tab, map_sym_tab, struct_sym_tab
):
"""Evaluate argument and return integer value"""
result = eval_expr(
func, module, builder, arg, local_sym_tab, map_sym_tab, struct_sym_tab
)
if not result:
raise ValueError("Failed to evaluate argument")
val, val_type = result
if not isinstance(val_type, ir.IntType):
raise ValueError(f"Expected integer type, got {val_type}")
return val

View File

@ -2,68 +2,18 @@ import ctypes
def ktime(): def ktime():
"""get current ktime"""
return ctypes.c_int64(0) return ctypes.c_int64(0)
def pid(): def pid():
"""get current process id"""
return ctypes.c_int32(0) return ctypes.c_int32(0)
def deref(ptr): def deref(ptr):
"""dereference a pointer""" "dereference a pointer"
result = ctypes.cast(ptr, ctypes.POINTER(ctypes.c_void_p)).contents.value result = ctypes.cast(ptr, ctypes.POINTER(ctypes.c_void_p)).contents.value
return result if result is not None else 0 return result if result is not None else 0
def comm(buf):
"""get current process command name"""
return ctypes.c_int64(0)
def probe_read_str(dst, src):
"""Safely read a null-terminated string from kernel memory"""
return ctypes.c_int64(0)
def random():
"""get a pseudorandom u32 number"""
return ctypes.c_int32(0)
def probe_read(dst, size, src):
"""Safely read data from kernel memory"""
return ctypes.c_int64(0)
def smp_processor_id():
"""get the current CPU id"""
return ctypes.c_int32(0)
def uid():
"""get current user id"""
return ctypes.c_int32(0)
def skb_store_bytes(offset, from_buf, size, flags=0):
"""store bytes into a socket buffer"""
return ctypes.c_int64(0)
def get_stack(buf, flags=0):
"""get the current stack trace"""
return ctypes.c_int64(0)
def get_current_cgroup_id():
"""Get the current cgroup ID"""
return ctypes.c_int64(0)
XDP_ABORTED = ctypes.c_int64(0)
XDP_DROP = ctypes.c_int64(1) XDP_DROP = ctypes.c_int64(1)
XDP_PASS = ctypes.c_int64(2) XDP_PASS = ctypes.c_int64(2)
XDP_TX = ctypes.c_int64(3)
XDP_REDIRECT = ctypes.c_int64(4)

View File

@ -1,272 +0,0 @@
import ast
import logging
from llvmlite import ir
from pythonbpf.expr import eval_expr, get_base_type_and_depth, deref_to_depth
from pythonbpf.expr.vmlinux_registry import VmlinuxHandlerRegistry
from pythonbpf.helper.helper_utils import get_char_array_ptr_and_size
logger = logging.getLogger(__name__)
def simple_string_print(string_value, module, builder, func):
"""Prepare arguments for bpf_printk from a simple string value"""
fmt_str = string_value + "\n\0"
fmt_ptr = _create_format_string_global(fmt_str, func, module, builder)
args = [fmt_ptr, ir.Constant(ir.IntType(32), len(fmt_str))]
return args
def handle_fstring_print(
joined_str,
module,
builder,
func,
local_sym_tab=None,
struct_sym_tab=None,
):
"""Handle f-string formatting for bpf_printk emitter."""
fmt_parts = []
exprs = []
for value in joined_str.values:
logger.debug(f"Processing f-string value: {ast.dump(value)}")
if isinstance(value, ast.Constant):
_process_constant_in_fstring(value, fmt_parts, exprs)
elif isinstance(value, ast.FormattedValue):
_process_fval(
value,
fmt_parts,
exprs,
local_sym_tab,
struct_sym_tab,
)
else:
raise NotImplementedError(f"Unsupported f-string value type: {type(value)}")
fmt_str = "".join(fmt_parts)
args = simple_string_print(fmt_str, module, builder, func)
# NOTE: Process expressions (limited to 3 due to BPF constraints)
if len(exprs) > 3:
logger.warning("bpf_printk supports up to 3 args, extra args will be ignored.")
for expr in exprs[:3]:
arg_value = _prepare_expr_args(
expr,
func,
module,
builder,
local_sym_tab,
struct_sym_tab,
)
args.append(arg_value)
return args
# ============================================================================
# Internal Helpers
# ============================================================================
def _process_constant_in_fstring(cst, fmt_parts, exprs):
"""Process constant values in f-string."""
if isinstance(cst.value, str):
fmt_parts.append(cst.value)
elif isinstance(cst.value, int):
fmt_parts.append("%lld")
exprs.append(ir.Constant(ir.IntType(64), cst.value))
else:
raise NotImplementedError(
f"Unsupported constant type in f-string: {type(cst.value)}"
)
def _process_fval(fval, fmt_parts, exprs, local_sym_tab, struct_sym_tab):
"""Process formatted values in f-string."""
logger.debug(f"Processing formatted value: {ast.dump(fval)}")
if isinstance(fval.value, ast.Name):
_process_name_in_fval(fval.value, fmt_parts, exprs, local_sym_tab)
elif isinstance(fval.value, ast.Attribute):
_process_attr_in_fval(
fval.value,
fmt_parts,
exprs,
local_sym_tab,
struct_sym_tab,
)
else:
raise NotImplementedError(
f"Unsupported formatted value in f-string: {type(fval.value)}"
)
def _process_name_in_fval(name_node, fmt_parts, exprs, local_sym_tab):
"""Process name nodes in formatted values."""
if local_sym_tab and name_node.id in local_sym_tab:
_, var_type, tmp = local_sym_tab[name_node.id]
_populate_fval(var_type, name_node, fmt_parts, exprs)
else:
# Try to resolve through vmlinux registry if not in local symbol table
result = VmlinuxHandlerRegistry.handle_name(name_node.id)
if result:
val, var_type = result
_populate_fval(var_type, name_node, fmt_parts, exprs)
else:
raise ValueError(
f"Variable '{name_node.id}' not found in symbol table or vmlinux"
)
def _process_attr_in_fval(attr_node, fmt_parts, exprs, local_sym_tab, struct_sym_tab):
"""Process attribute nodes in formatted values."""
if (
isinstance(attr_node.value, ast.Name)
and local_sym_tab
and attr_node.value.id in local_sym_tab
):
var_name = attr_node.value.id
field_name = attr_node.attr
var_type = local_sym_tab[var_name].metadata
if var_type not in struct_sym_tab:
raise ValueError(
f"Struct '{var_type}' for '{var_name}' not in symbol table"
)
struct_info = struct_sym_tab[var_type]
if field_name not in struct_info.fields:
raise ValueError(f"Field '{field_name}' not found in struct '{var_type}'")
field_type = struct_info.field_type(field_name)
_populate_fval(field_type, attr_node, fmt_parts, exprs)
else:
raise NotImplementedError(
"Only simple attribute on local vars is supported in f-strings."
)
def _populate_fval(ftype, node, fmt_parts, exprs):
"""Populate format parts and expressions based on field type."""
if isinstance(ftype, ir.IntType):
# TODO: We print as signed integers only for now
if ftype.width == 64:
fmt_parts.append("%lld")
exprs.append(node)
elif ftype.width == 32:
fmt_parts.append("%d")
exprs.append(node)
else:
raise NotImplementedError(
f"Unsupported integer width in f-string: {ftype.width}"
)
elif isinstance(ftype, ir.PointerType):
target, depth = get_base_type_and_depth(ftype)
if isinstance(target, ir.IntType):
if target.width == 64:
fmt_parts.append("%lld")
exprs.append(node)
elif target.width == 32:
fmt_parts.append("%d")
exprs.append(node)
elif target.width == 8 and depth == 1:
# NOTE: Assume i8* is a string
fmt_parts.append("%s")
exprs.append(node)
else:
raise NotImplementedError(
f"Unsupported pointer target type in f-string: {target}"
)
else:
raise NotImplementedError(
f"Unsupported pointer target type in f-string: {target}"
)
elif isinstance(ftype, ir.ArrayType):
if isinstance(ftype.element, ir.IntType) and ftype.element.width == 8:
# Char array
fmt_parts.append("%s")
exprs.append(node)
else:
raise NotImplementedError(
f"Unsupported array element type in f-string: {ftype.element}"
)
else:
raise NotImplementedError(f"Unsupported field type in f-string: {ftype}")
def _create_format_string_global(fmt_str, func, module, builder):
"""Create a global variable for the format string."""
fmt_name = f"{func.name}____fmt{func._fmt_counter}"
func._fmt_counter += 1
fmt_gvar = ir.GlobalVariable(
module, ir.ArrayType(ir.IntType(8), len(fmt_str)), name=fmt_name
)
fmt_gvar.global_constant = True
fmt_gvar.initializer = ir.Constant(
ir.ArrayType(ir.IntType(8), len(fmt_str)), bytearray(fmt_str.encode("utf8"))
)
fmt_gvar.linkage = "internal"
fmt_gvar.align = 1
return builder.bitcast(fmt_gvar, ir.PointerType())
def _prepare_expr_args(expr, func, module, builder, local_sym_tab, struct_sym_tab):
"""Evaluate and prepare an expression to use as an arg for bpf_printk."""
# Special case: struct field char array needs pointer to first element
if isinstance(expr, ast.Attribute):
char_array_ptr, _ = get_char_array_ptr_and_size(
expr, builder, local_sym_tab, struct_sym_tab, func
)
if char_array_ptr:
return char_array_ptr
# Regular expression evaluation
val, _ = eval_expr(func, module, builder, expr, local_sym_tab, None, struct_sym_tab)
if not val:
logger.warning("Failed to evaluate expression for bpf_printk, defaulting to 0")
return ir.Constant(ir.IntType(64), 0)
# Convert value to bpf_printk compatible type
if isinstance(val.type, ir.PointerType):
return _handle_pointer_arg(val, func, builder)
elif isinstance(val.type, ir.IntType):
return _handle_int_arg(val, builder)
else:
logger.warning(f"Unsupported type {val.type} in bpf_printk, defaulting to 0")
return ir.Constant(ir.IntType(64), 0)
def _handle_pointer_arg(val, func, builder):
"""Convert pointer type for bpf_printk."""
target, depth = get_base_type_and_depth(val.type)
if not isinstance(target, ir.IntType):
logger.warning("Only int pointers supported in bpf_printk, defaulting to 0")
return ir.Constant(ir.IntType(64), 0)
# i8* is string - use as-is
if target.width == 8 and depth == 1:
return val
# Integer pointers: dereference and sign-extend to i64
if target.width >= 32:
val = deref_to_depth(func, builder, val, depth)
return builder.sext(val, ir.IntType(64))
logger.warning("Unsupported pointer width in bpf_printk, defaulting to 0")
return ir.Constant(ir.IntType(64), 0)
def _handle_int_arg(val, builder):
"""Convert integer type for bpf_printk (sign-extend to i64)."""
if val.type.width < 64:
return builder.sext(val, ir.IntType(64))
return val

View File

@ -1,9 +1,5 @@
from llvmlite import ir from llvmlite import ir
import ast import ast
from logging import Logger
import logging
logger: Logger = logging.getLogger(__name__)
def emit_license(module: ir.Module, license_str: str): def emit_license(module: ir.Module, license_str: str):
@ -45,9 +41,9 @@ def license_processing(tree, module):
emit_license(module, node.body[0].value.value) emit_license(module, node.body[0].value.value)
return "LICENSE" return "LICENSE"
else: else:
logger.info("ERROR: LICENSE() must return a string literal") print("ERROR: LICENSE() must return a string literal")
return None return None
else: else:
logger.info("ERROR: LICENSE already defined") print("ERROR: LICENSE already defined")
return None return None
return None return None

View File

@ -1,15 +0,0 @@
import llvmlite.ir as ir
from dataclasses import dataclass
from typing import Any
@dataclass
class LocalSymbol:
var: ir.AllocaInstr
ir_type: ir.Type
metadata: Any = None
def __iter__(self):
yield self.var
yield self.ir_type
yield self.metadata

View File

@ -1,5 +1,4 @@
from .maps import HashMap, PerfEventArray, RingBuffer from .maps import HashMap, PerfEventArray, RingBuf
from .maps_pass import maps_proc from .maps_pass import maps_proc
from .map_types import BPFMapType
__all__ = ["HashMap", "PerfEventArray", "maps_proc", "RingBuffer", "BPFMapType"] __all__ = ["HashMap", "PerfEventArray", "maps_proc", "RingBuf"]

Some files were not shown because too many files have changed in this diff Show More