Files
python-bpf/BCC-Examples/vfsreadlat_plotly/dashboard.py

283 lines
9.1 KiB
Python

"""Plotly Dash dashboard for visualizing latency data."""
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
class LatencyDashboard:
"""Interactive dashboard for latency visualization."""
def __init__(self, collector, title: str = "VFS Read Latency Monitor"):
self.collector = collector
self.app = dash.Dash(__name__)
self.app.title = title
self._setup_layout()
self._setup_callbacks()
def _setup_layout(self):
"""Create dashboard layout."""
self.app.layout = html.Div(
[
html.H1(
"🔥 VFS Read Latency Dashboard",
style={
"textAlign": "center",
"color": "#2c3e50",
"marginBottom": 20,
},
),
# Stats cards
html.Div(
[
self._create_stat_card(
"total-samples", "📊 Total Samples", "#3498db"
),
self._create_stat_card(
"mean-latency", "⚡ Mean Latency", "#e74c3c"
),
self._create_stat_card(
"p99-latency", "🔥 P99 Latency", "#f39c12"
),
],
style={
"display": "flex",
"justifyContent": "space-around",
"marginBottom": 30,
},
),
# Graphs - ✅ Make sure these IDs match the callback outputs
dcc.Graph(id="dual-histogram", style={"height": "450px"}),
dcc.Graph(id="log2-buckets", style={"height": "350px"}),
dcc.Graph(id="timeseries-graph", style={"height": "300px"}),
# Auto-update
dcc.Interval(id="interval-component", interval=1000, n_intervals=0),
],
style={"padding": 20, "fontFamily": "Arial, sans-serif"},
)
def _create_stat_card(self, id_name: str, title: str, color: str):
"""Create a statistics card."""
return html.Div(
[
html.H3(title, style={"color": color}),
html.H2(id=id_name, style={"fontSize": 48, "color": "#2c3e50"}),
],
className="stat-box",
style={
"background": "white",
"padding": 20,
"borderRadius": 10,
"boxShadow": "0 4px 6px rgba(0,0,0,0.1)",
"textAlign": "center",
"flex": 1,
"margin": "0 10px",
},
)
def _setup_callbacks(self):
"""Setup dashboard callbacks."""
@self.app.callback(
[
Output("total-samples", "children"),
Output("mean-latency", "children"),
Output("p99-latency", "children"),
Output("dual-histogram", "figure"), # ✅ Match layout IDs
Output("log2-buckets", "figure"), # ✅ Match layout IDs
Output("timeseries-graph", "figure"), # ✅ Match layout IDs
],
[Input("interval-component", "n_intervals")],
)
def update_dashboard(n):
stats = self.collector.get_stats()
if stats.total == 0:
return self._empty_state()
return (
f"{stats.total:,}",
f"{stats.mean:.1f} µs",
f"{stats.p99:.1f} µs",
self._create_dual_histogram(),
self._create_log2_buckets(),
self._create_timeseries(),
)
def _empty_state(self):
"""Return empty state for dashboard."""
empty_fig = go.Figure()
empty_fig.update_layout(
title="Waiting for data... Generate some disk I/O!", template="plotly_white"
)
# ✅ Return 6 values (3 stats + 3 figures)
return "0", "0 µs", "0 µs", empty_fig, empty_fig, empty_fig
def _create_dual_histogram(self) -> go.Figure:
"""Create side-by-side linear and log2 histograms."""
latencies = self.collector.get_all_latencies()
# Create subplots
fig = make_subplots(
rows=1,
cols=2,
subplot_titles=("Linear Scale", "Log2 Scale"),
horizontal_spacing=0.12,
)
# Linear histogram
fig.add_trace(
go.Histogram(
x=latencies,
nbinsx=50,
marker_color="rgb(55, 83, 109)",
opacity=0.75,
name="Linear",
),
row=1,
col=1,
)
# Log2 histogram
log2_latencies = np.log2(latencies + 1) # +1 to avoid log2(0)
fig.add_trace(
go.Histogram(
x=log2_latencies,
nbinsx=30,
marker_color="rgb(243, 156, 18)",
opacity=0.75,
name="Log2",
),
row=1,
col=2,
)
# Update axes
fig.update_xaxes(title_text="Latency (µs)", row=1, col=1)
fig.update_xaxes(title_text="log2(Latency in µs)", row=1, col=2)
fig.update_yaxes(title_text="Count", row=1, col=1)
fig.update_yaxes(title_text="Count", row=1, col=2)
fig.update_layout(
title_text="📊 Latency Distribution (Linear vs Log2)",
template="plotly_white",
showlegend=False,
height=450,
)
return fig
def _create_log2_buckets(self) -> go.Figure:
"""Create bar chart of log2 buckets (like BCC histogram)."""
buckets = self.collector.get_histogram_buckets()
if not buckets:
fig = go.Figure()
fig.update_layout(
title="🔥 Log2 Histogram - Waiting for data...", template="plotly_white"
)
return fig
# Sort buckets
sorted_buckets = sorted(buckets.keys())
counts = [buckets[b] for b in sorted_buckets]
# Create labels (e.g., "8-16µs", "16-32µs")
labels = []
hover_text = []
for bucket in sorted_buckets:
lower = 2**bucket
upper = 2 ** (bucket + 1)
labels.append(f"{lower}-{upper}")
# Calculate percentage
total = sum(counts)
pct = (buckets[bucket] / total) * 100 if total > 0 else 0
hover_text.append(
f"Range: {lower}-{upper} µs<br>"
f"Count: {buckets[bucket]:,}<br>"
f"Percentage: {pct:.2f}%"
)
# Create bar chart
fig = go.Figure()
fig.add_trace(
go.Bar(
x=labels,
y=counts,
marker=dict(
color=counts,
colorscale="YlOrRd",
showscale=True,
colorbar=dict(title="Count"),
),
text=counts,
textposition="outside",
hovertext=hover_text,
hoverinfo="text",
)
)
fig.update_layout(
title="🔥 Log2 Histogram (BCC-style buckets)",
xaxis_title="Latency Range (µs)",
yaxis_title="Count",
template="plotly_white",
height=350,
xaxis=dict(tickangle=-45),
)
return fig
def _create_timeseries(self) -> go.Figure:
"""Create time series figure."""
recent = self.collector.get_recent_latencies()
if not recent:
fig = go.Figure()
fig.update_layout(
title="⏱️ Real-time Latency - Waiting for data...",
template="plotly_white",
)
return fig
times = [d["time"] for d in recent]
lats = [d["latency"] for d in recent]
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=times,
y=lats,
mode="lines",
line=dict(color="rgb(231, 76, 60)", width=2),
fill="tozeroy",
fillcolor="rgba(231, 76, 60, 0.2)",
)
)
fig.update_layout(
title="⏱️ Real-time Latency (Last 10,000 samples)",
xaxis_title="Time (seconds)",
yaxis_title="Latency (µs)",
template="plotly_white",
height=300,
)
return fig
def run(self, host: str = "0.0.0.0", port: int = 8050, debug: bool = False):
"""Run the dashboard server."""
print(f"\n{'=' * 60}")
print(f"🚀 Dashboard running at: http://{host}:{port}")
print(" Access from your browser to see live graphs")
print(
" Generate disk I/O to see data: dd if=/dev/zero of=/tmp/test bs=1M count=100"
)
print(f"{'=' * 60}\n")
self.app.run(debug=debug, host=host, port=port)