Files
python-bpf/examples/anomaly-detection/lib/ml.py

174 lines
5.0 KiB
Python

"""
Autoencoder for Process Behavior Anomaly Detection
Uses Keras/TensorFlow to train an autoencoder on syscall patterns.
Anomalies are detected when reconstruction error exceeds threshold.
"""
import logging
import os
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from tensorflow import keras
from lib import MAX_SYSCALLS
logger = logging.getLogger(__name__)
def create_autoencoder(n_inputs: int = MAX_SYSCALLS) -> keras.Model:
"""
Create the autoencoder architecture.
Architecture: input → encoder → bottleneck → decoder → output
"""
inp = keras.Input(shape=(n_inputs,))
# Encoder
encoder = keras.layers.Dense(n_inputs)(inp)
encoder = keras.layers.ReLU()(encoder)
# Bottleneck (compressed representation)
bottleneck = keras.layers.Dense(n_inputs // 2)(encoder)
# Decoder
decoder = keras.layers.Dense(n_inputs)(bottleneck)
decoder = keras.layers.ReLU()(decoder)
output = keras.layers.Dense(n_inputs, activation="linear")(decoder)
model = keras.Model(inp, output)
model.compile(optimizer="adam", loss="mse")
return model
class AutoEncoder:
"""
Autoencoder for syscall pattern anomaly detection.
Usage:
# Training
ae = AutoEncoder('model.keras')
model, threshold = ae.train('data.csv', epochs=200)
# Inference
ae = AutoEncoder('model.keras', load=True)
_, errors, total_error = ae.predict([features])
"""
def __init__(self, filename: str, load: bool = False):
self.filename = filename
self.model = None
if load:
self._load_model()
def _load_model(self) -> None:
"""Load a trained model from disk."""
if not os.path.exists(self.filename):
raise FileNotFoundError(f"Model file not found: {self.filename}")
logger.info(f"Loading model from {self.filename}")
self.model = keras.models.load_model(self.filename)
def train(
self,
datafile: str,
epochs: int,
batch_size: int,
test_size: float = 0.1,
) -> tuple[keras.Model, float]:
"""
Train the autoencoder on collected data.
Args:
datafile: Path to CSV file with training data
epochs: Number of training epochs
batch_size: Training batch size
test_size: Fraction of data to use for validation
Returns:
Tuple of (trained model, error threshold)
"""
if not os.path.exists(datafile):
raise FileNotFoundError(f"Data file not found: {datafile}")
logger.info(f"Loading training data from {datafile}")
# Load and prepare data
df = pd.read_csv(datafile)
features = df.drop(["sample_time"], axis=1).values
logger.info(f"Loaded {len(features)} samples with {features.shape[1]} features")
# Split train/test
train_data, test_data = train_test_split(
features,
test_size=test_size,
random_state=42,
)
logger.info(f"Training set: {len(train_data)} samples")
logger.info(f"Test set: {len(test_data)} samples")
# Create and train model
self.model = create_autoencoder()
if self.model is None:
raise RuntimeError("Failed to create the autoencoder model.")
logger.info("Training autoencoder...")
self.model.fit(
train_data,
train_data,
validation_data=(test_data, test_data),
epochs=epochs,
batch_size=batch_size,
verbose=1,
)
# Save model (use .keras format for Keras 3.x compatibility)
self.model.save(self.filename)
logger.info(f"Model saved to {self.filename}")
# Calculate error threshold from test data
threshold = self._calculate_threshold(test_data)
return self.model, threshold
def _calculate_threshold(self, test_data: np.ndarray) -> float:
"""Calculate error threshold from test data."""
logger.info(f"Calculating error threshold from {len(test_data)} test samples")
if self.model is None:
raise RuntimeError("Model not loaded. Use load=True or train first.")
predictions = self.model.predict(test_data, verbose=0)
errors = np.abs(test_data - predictions).sum(axis=1)
return float(errors.max())
def predict(self, X: list | np.ndarray) -> tuple[np.ndarray, np.ndarray, float]:
"""
Run prediction and return reconstruction error.
Args:
X: Input data (list of feature vectors)
Returns:
Tuple of (reconstructed, per_feature_errors, total_error)
"""
if self.model is None:
raise RuntimeError("Model not loaded. Use load=True or train first.")
X = np.asarray(X, dtype=np.float32)
y = self.model.predict(X, verbose=0)
# Per-feature reconstruction error
errors = np.abs(X[0] - y[0])
total_error = float(errors.sum())
return y, errors, total_error