Files
python-bpf/examples/anomaly-detection/main.py

336 lines
9.5 KiB
Python

#!/usr/bin/env python3
"""
Process Behavior Anomaly Detection using PythonBPF and Autoencoders
Ported from evilsocket's BCC implementation to PythonBPF.
https://github.com/evilsocket/ebpf-process-anomaly-detection
Usage:
# 1.Learn normal behavior from a process
sudo python main.py --learn --pid 1234 --data normal.csv
# 2.Train the autoencoder (no sudo needed)
python main.py --train --data normal.csv --model model.h5
# 3.Monitor for anomalies
sudo python main.py --run --pid 1234 --model model.h5
"""
import argparse
import logging
import os
import sys
import time
from collections import Counter
from lib import MAX_SYSCALLS
from lib.ml import AutoEncoder
from lib.platform import SYSCALLS
from lib.probe import Probe
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
logger = logging.getLogger(__name__)
def learn(pid: int, data_path: str, poll_interval_ms: int) -> None:
"""
Capture syscall patterns from target process.
Args:
pid: Target process ID
data_path: Path to save CSV data
poll_interval_ms: Polling interval in milliseconds
"""
if os.path.exists(data_path):
logger.error(
f"{data_path} already exists.Delete it or use a different filename."
)
sys.exit(1)
try:
probe = Probe(pid)
except ValueError as e:
logger.error(str(e))
sys.exit(1)
probe_comm = probe.comm.decode() if probe.comm else "unknown"
print(f"📊 Learning from process {pid} ({probe_comm})")
print(f"📁 Saving data to {data_path}")
print(f"⏱️ Polling interval: {poll_interval_ms}ms")
print("Press Ctrl+C to stop...\n")
probe.start()
prev_histogram = [0.0] * MAX_SYSCALLS
prev_report_time = time.time()
sample_count = 0
poll_interval_sec = poll_interval_ms / 1000.0
header = "sample_time," + ",".join(f"sys_{i}" for i in range(MAX_SYSCALLS))
with open(data_path, "w") as fp:
fp.write(header + "\n")
try:
while True:
histogram = [float(x) for x in probe.get_histogram()]
if histogram != prev_histogram:
deltas = _compute_deltas(prev_histogram, histogram)
prev_histogram = histogram.copy()
row = f"{time.time()},{','.join(map(str, deltas))}"
fp.write(row + "\n")
fp.flush()
sample_count += 1
now = time.time()
if now - prev_report_time >= 1.0:
print(f" {sample_count} samples saved...")
prev_report_time = now
time.sleep(poll_interval_sec)
except KeyboardInterrupt:
print(f"\n✅ Stopped. Saved {sample_count} samples to {data_path}")
def train(data_path: str, model_path: str, epochs: int, batch_size: int) -> None:
"""
Train autoencoder on captured data.
Args:
data_path: Path to training CSV data
model_path: Path to save trained model
epochs: Number of training epochs
batch_size: Training batch size
"""
if not os.path.exists(data_path):
logger.error(f"Data file {data_path} not found.Run --learn first.")
sys.exit(1)
print(f"🧠 Training autoencoder on {data_path}")
print(f" Epochs: {epochs}")
print(f" Batch size: {batch_size}")
print()
ae = AutoEncoder(model_path)
_, threshold = ae.train(data_path, epochs, batch_size)
print()
print("=" * 50)
print("✅ Training complete!")
print(f" Model saved to: {model_path}")
print(f" Error threshold: {threshold:.6f}")
print()
print(f"💡 Use --max-error {threshold:.4f} when running detection")
print("=" * 50)
def run(pid: int, model_path: str, max_error: float, poll_interval_ms: int) -> None:
"""
Monitor process and detect anomalies.
Args:
pid: Target process ID
model_path: Path to trained model
max_error: Anomaly detection threshold
poll_interval_ms: Polling interval in milliseconds
"""
if not os.path.exists(model_path):
logger.error(f"Model file {model_path} not found. Run --train first.")
sys.exit(1)
try:
probe = Probe(pid)
except ValueError as e:
logger.error(str(e))
sys.exit(1)
ae = AutoEncoder(model_path, load=True)
probe_comm = probe.comm.decode() if probe.comm else "unknown"
print(f"🔍 Monitoring process {pid} ({probe_comm}) for anomalies")
print(f" Error threshold: {max_error}")
print(f" Polling interval: {poll_interval_ms}ms")
print("Press Ctrl+C to stop...\n")
probe.start()
prev_histogram = [0.0] * MAX_SYSCALLS
anomaly_count = 0
check_count = 0
poll_interval_sec = poll_interval_ms / 1000.0
try:
while True:
histogram = [float(x) for x in probe.get_histogram()]
if histogram != prev_histogram:
deltas = _compute_deltas(prev_histogram, histogram)
prev_histogram = histogram.copy()
check_count += 1
_, feat_errors, total_error = ae.predict([deltas])
if total_error > max_error:
anomaly_count += 1
_report_anomaly(anomaly_count, total_error, max_error, feat_errors)
time.sleep(poll_interval_sec)
except KeyboardInterrupt:
print("\n✅ Stopped.")
print(f" Checks performed: {check_count}")
print(f" Anomalies detected: {anomaly_count}")
def _compute_deltas(prev: list[float], current: list[float]) -> list[float]:
"""Compute rate of change between two histograms."""
deltas = []
for p, c in zip(prev, current):
if c != 0.0:
delta = 1.0 - (p / c)
else:
delta = 0.0
deltas.append(delta)
return deltas
def _report_anomaly(
count: int,
total_error: float,
threshold: float,
feat_errors: list[float],
) -> None:
"""Print anomaly report with top offending syscalls."""
print(f"🚨 ANOMALY #{count} detected!")
print(f" Total error: {total_error:.4f} (threshold: {threshold})")
errors_by_syscall = {idx: err for idx, err in enumerate(feat_errors)}
top3 = Counter(errors_by_syscall).most_common(3)
print(" Top anomalous syscalls:")
for idx, err in top3:
name = SYSCALLS.get(idx, f"syscall_{idx}")
print(f"{name!r}: {err:.4f}")
print()
def parse_args() -> argparse.Namespace:
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Process anomaly detection with PythonBPF and Autoencoders",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Learn from a process (e.g., Firefox) for a few minutes
sudo python main.py --learn --pid $(pgrep -o firefox) --data firefox.csv
# Train the model (no sudo needed)
python main.py --train --data firefox.csv --model firefox.h5
# Monitor the same process for anomalies
sudo python main.py --run --pid $(pgrep -o firefox) --model firefox.h5
# Full workflow for nginx:
sudo python main.py --learn --pid $(pgrep -o nginx) --data nginx_normal.csv
python main.py --train --data nginx_normal.csv --model nginx.h5 --epochs 100
sudo python main.py --run --pid $(pgrep -o nginx) --model nginx.h5 --max-error 0.05
""",
)
actions = parser.add_mutually_exclusive_group()
actions.add_argument(
"--learn",
action="store_true",
help="Capture syscall patterns from a process",
)
actions.add_argument(
"--train",
action="store_true",
help="Train autoencoder on captured data",
)
actions.add_argument(
"--run",
action="store_true",
help="Monitor process for anomalies",
)
parser.add_argument(
"--pid",
type=int,
default=0,
help="Target process ID",
)
parser.add_argument(
"--data",
default="data.csv",
help="CSV file for training data (default: data.csv)",
)
parser.add_argument(
"--model",
default="model.keras",
help="Model file path (default: model.h5)",
)
parser.add_argument(
"--time",
type=int,
default=100,
help="Polling interval in milliseconds (default: 100)",
)
parser.add_argument(
"--epochs",
type=int,
default=200,
help="Training epochs (default: 200)",
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="Training batch size (default: 16)",
)
parser.add_argument(
"--max-error",
type=float,
default=0.09,
help="Anomaly detection threshold (default: 0.09)",
)
return parser.parse_args()
def main() -> None:
"""Main entry point."""
args = parse_args()
if not any([args.learn, args.train, args.run]):
print("No action specified.Use --learn, --train, or --run.")
print("Run with --help for usage information.")
sys.exit(0)
if args.learn:
if args.pid == 0:
logger.error("--pid required for --learn")
sys.exit(1)
learn(args.pid, args.data, args.time)
elif args.train:
train(args.data, args.model, args.epochs, args.batch_size)
elif args.run:
if args.pid == 0:
logger.error("--pid required for --run")
sys.exit(1)
run(args.pid, args.model, args.max_error, args.time)
if __name__ == "__main__":
main()