3 Commits

172 changed files with 327109 additions and 14222 deletions

2
.gitattributes vendored
View File

@ -1,3 +1 @@
tests/c-form/vmlinux.h linguist-vendored
examples/ linguist-vendored
BCC-Examples/ linguist-vendored

View File

@ -12,8 +12,8 @@ jobs:
name: Format
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v6
- uses: actions/setup-python@v6
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.x"
- uses: pre-commit/action@v3.0.1

View File

@ -20,7 +20,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v6
- uses: actions/checkout@v5
- uses: actions/setup-python@v6
with:
@ -33,7 +33,7 @@ jobs:
python -m build
- name: Upload distributions
uses: actions/upload-artifact@v5
uses: actions/upload-artifact@v4
with:
name: release-dists
path: dist/
@ -59,7 +59,7 @@ jobs:
steps:
- name: Retrieve release distributions
uses: actions/download-artifact@v6
uses: actions/download-artifact@v5
with:
name: release-dists
path: dist/

3
.gitignore vendored
View File

@ -7,6 +7,3 @@ __pycache__/
*.ll
*.o
.ipynb_checkpoints/
vmlinux.py
~*
vmlinux.h

View File

@ -12,7 +12,7 @@
#
# See https://github.com/pre-commit/pre-commit
exclude: 'vmlinux.py'
exclude: 'vmlinux.*\.py$'
ci:
autoupdate_commit_msg: "chore: update pre-commit hooks"
@ -21,7 +21,7 @@ ci:
repos:
# Standard hooks
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v6.0.0
rev: v4.6.0
hooks:
- id: check-added-large-files
- id: check-case-conflict
@ -36,19 +36,19 @@ repos:
- id: trailing-whitespace
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: "v0.13.2"
rev: "v0.4.2"
hooks:
- id: ruff
args: ["--fix", "--show-fixes"]
- id: ruff-format
# exclude: ^(docs)|^(tests)|^(examples)
exclude: ^(tests/|examples/|docs/)
# Checking static types
- repo: https://github.com/pre-commit/mirrors-mypy
rev: "v1.18.2"
rev: "v1.10.0"
hooks:
- id: mypy
exclude: ^(tests)|^(examples)
exclude: ^(tests/|examples/)
additional_dependencies: [types-setuptools]
# Changes tabs to spaces

View File

@ -1,31 +0,0 @@
## BCC examples ported to PythonBPF
This folder contains examples of BCC tutorial examples that have been ported to use **PythonBPF**.
## Requirements
- install `pythonbpf` and `pylibbpf` using pip.
- You will also need `matplotlib` for vfsreadlat.py example.
- You will also need `rich` for vfsreadlat_rich.py example.
- You will also need `plotly` and `dash` for vfsreadlat_plotly.py example.
- All of these are added to `requirements.txt` file. You can install them using the following command:
```bash
pip install -r requirements.txt
```
## Usage
- You'll need root privileges to run these examples. If you are using a virtualenv, use the following command to run the scripts:
```bash
sudo <path_to_virtualenv>/bin/python3 <script_name>.py
```
- For the disksnoop and container-monitor examples, you need to generate the vmlinux.py file first. Follow the instructions in the [main README](https://github.com/pythonbpf/Python-BPF/tree/master?tab=readme-ov-file#first-generate-the-vmlinuxpy-file-for-your-kernel) to generate the vmlinux.py file.
- For vfsreadlat_plotly.py, run the following command to start the Dash server:
```bash
sudo <path_to_virtualenv>/bin/python3 vfsreadlat_plotly/bpf_program.py
```
Then open your web browser and navigate to the given URL.
- For container-monitor, you need to first copy the vmlinux.py to `container-monitor/` directory.
Then run the following command to run the example:
```bash
cp vmlinux.py container-monitor/
sudo <path_to_virtualenv>/bin/python3 container-monitor/container_monitor.py
```

View File

@ -1,49 +0,0 @@
# Container Monitor TUI
A beautiful terminal-based container monitoring tool that combines syscall tracking, file I/O monitoring, and network traffic analysis using eBPF.
## Features
- 🎯 **Interactive Cgroup Selection** - Navigate and select cgroups with arrow keys
- 📊 **Real-time Monitoring** - Live graphs and statistics
- 🔥 **Syscall Tracking** - Total syscall count per cgroup
- 💾 **File I/O Monitoring** - Read/write operations and bytes with graphs
- 🌐 **Network Traffic** - RX/TX packets and bytes with live graphs
-**Efficient Caching** - Reduced /proc lookups for better performance
- 🎨 **Beautiful TUI** - Clean, colorful terminal interface
## Requirements
- Python 3.7+
- pythonbpf
- Root privileges (for eBPF)
## Installation
```bash
# Ensure you have pythonbpf installed
pip install pythonbpf
# Run the monitor
sudo $(which python) container_monitor.py
```
## Usage
1. **Selection Screen**: Use ↑↓ arrow keys to navigate through cgroups, press ENTER to select
2. **Monitoring Screen**: View real-time graphs and statistics, press ESC or 'b' to go back
3. **Exit**: Press 'q' at any time to quit
## Architecture
- `container_monitor.py` - Main BPF program combining all three tracers
- `data_collector.py` - Data collection, caching, and history management
- `tui. py` - Terminal user interface with selection and monitoring screens
## BPF Programs
- **vfs_read/vfs_write** - Track file I/O operations
- **__netif_receive_skb/__dev_queue_xmit** - Track network traffic
- **raw_syscalls/sys_enter** - Count all syscalls
All programs filter by cgroup ID for per-container monitoring.

View File

@ -1,220 +0,0 @@
"""Container Monitor - TUI-based cgroup monitoring combining syscall, file I/O, and network tracking."""
from pythonbpf import bpf, map, section, bpfglobal, struct, BPF
from pythonbpf.maps import HashMap
from pythonbpf.helper import get_current_cgroup_id
from ctypes import c_int32, c_uint64, c_void_p
from vmlinux import struct_pt_regs, struct_sk_buff
from data_collection import ContainerDataCollector
from tui import ContainerMonitorTUI
# ==================== BPF Structs ====================
@bpf
@struct
class read_stats:
bytes: c_uint64
ops: c_uint64
@bpf
@struct
class write_stats:
bytes: c_uint64
ops: c_uint64
@bpf
@struct
class net_stats:
rx_packets: c_uint64
tx_packets: c_uint64
rx_bytes: c_uint64
tx_bytes: c_uint64
# ==================== BPF Maps ====================
@bpf
@map
def read_map() -> HashMap:
return HashMap(key=c_uint64, value=read_stats, max_entries=1024)
@bpf
@map
def write_map() -> HashMap:
return HashMap(key=c_uint64, value=write_stats, max_entries=1024)
@bpf
@map
def net_stats_map() -> HashMap:
return HashMap(key=c_uint64, value=net_stats, max_entries=1024)
@bpf
@map
def syscall_count() -> HashMap:
return HashMap(key=c_uint64, value=c_uint64, max_entries=1024)
# ==================== File I/O Tracing ====================
@bpf
@section("kprobe/vfs_read")
def trace_read(ctx: struct_pt_regs) -> c_int32:
cg = get_current_cgroup_id()
count = c_uint64(ctx.dx)
ptr = read_map.lookup(cg)
if ptr:
s = read_stats()
s.bytes = ptr.bytes + count
s.ops = ptr.ops + 1
read_map.update(cg, s)
else:
s = read_stats()
s.bytes = count
s.ops = c_uint64(1)
read_map.update(cg, s)
return c_int32(0)
@bpf
@section("kprobe/vfs_write")
def trace_write(ctx1: struct_pt_regs) -> c_int32:
cg = get_current_cgroup_id()
count = c_uint64(ctx1.dx)
ptr = write_map.lookup(cg)
if ptr:
s = write_stats()
s.bytes = ptr.bytes + count
s.ops = ptr.ops + 1
write_map.update(cg, s)
else:
s = write_stats()
s.bytes = count
s.ops = c_uint64(1)
write_map.update(cg, s)
return c_int32(0)
# ==================== Network I/O Tracing ====================
@bpf
@section("kprobe/__netif_receive_skb")
def trace_netif_rx(ctx2: struct_pt_regs) -> c_int32:
cgroup_id = get_current_cgroup_id()
skb = struct_sk_buff(ctx2.di)
pkt_len = c_uint64(skb.len)
stats_ptr = net_stats_map.lookup(cgroup_id)
if stats_ptr:
stats = net_stats()
stats.rx_packets = stats_ptr.rx_packets + 1
stats.tx_packets = stats_ptr.tx_packets
stats.rx_bytes = stats_ptr.rx_bytes + pkt_len
stats.tx_bytes = stats_ptr.tx_bytes
net_stats_map.update(cgroup_id, stats)
else:
stats = net_stats()
stats.rx_packets = c_uint64(1)
stats.tx_packets = c_uint64(0)
stats.rx_bytes = pkt_len
stats.tx_bytes = c_uint64(0)
net_stats_map.update(cgroup_id, stats)
return c_int32(0)
@bpf
@section("kprobe/__dev_queue_xmit")
def trace_dev_xmit(ctx3: struct_pt_regs) -> c_int32:
cgroup_id = get_current_cgroup_id()
skb = struct_sk_buff(ctx3.di)
pkt_len = c_uint64(skb.len)
stats_ptr = net_stats_map.lookup(cgroup_id)
if stats_ptr:
stats = net_stats()
stats.rx_packets = stats_ptr.rx_packets
stats.tx_packets = stats_ptr.tx_packets + 1
stats.rx_bytes = stats_ptr.rx_bytes
stats.tx_bytes = stats_ptr.tx_bytes + pkt_len
net_stats_map.update(cgroup_id, stats)
else:
stats = net_stats()
stats.rx_packets = c_uint64(0)
stats.tx_packets = c_uint64(1)
stats.rx_bytes = c_uint64(0)
stats.tx_bytes = pkt_len
net_stats_map.update(cgroup_id, stats)
return c_int32(0)
# ==================== Syscall Tracing ====================
@bpf
@section("tracepoint/raw_syscalls/sys_enter")
def count_syscalls(ctx: c_void_p) -> c_int32:
cgroup_id = get_current_cgroup_id()
count_ptr = syscall_count.lookup(cgroup_id)
if count_ptr:
new_count = count_ptr + c_uint64(1)
syscall_count.update(cgroup_id, new_count)
else:
syscall_count.update(cgroup_id, c_uint64(1))
return c_int32(0)
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# ==================== Main ====================
if __name__ == "__main__":
print("🔥 Loading BPF programs...")
# Load and attach BPF program
b = BPF()
b.load()
b.attach_all()
# Get map references and enable struct deserialization
read_map_ref = b["read_map"]
write_map_ref = b["write_map"]
net_stats_map_ref = b["net_stats_map"]
syscall_count_ref = b["syscall_count"]
read_map_ref.set_value_struct("read_stats")
write_map_ref.set_value_struct("write_stats")
net_stats_map_ref.set_value_struct("net_stats")
print("✅ BPF programs loaded and attached")
# Setup data collector
collector = ContainerDataCollector(
read_map_ref, write_map_ref, net_stats_map_ref, syscall_count_ref
)
# Create and run TUI
tui = ContainerMonitorTUI(collector)
tui.run()

View File

@ -1,208 +0,0 @@
"""Data collection and management for container monitoring."""
import os
import time
from pathlib import Path
from typing import Dict, List, Set, Optional
from dataclasses import dataclass
from collections import deque, defaultdict
@dataclass
class CgroupInfo:
"""Information about a cgroup."""
id: int
name: str
path: str
@dataclass
class ContainerStats:
"""Statistics for a container/cgroup."""
cgroup_id: int
cgroup_name: str
# File I/O
read_ops: int = 0
read_bytes: int = 0
write_ops: int = 0
write_bytes: int = 0
# Network I/O
rx_packets: int = 0
rx_bytes: int = 0
tx_packets: int = 0
tx_bytes: int = 0
# Syscalls
syscall_count: int = 0
# Timestamp
timestamp: float = 0.0
class ContainerDataCollector:
"""Collects and manages container monitoring data from BPF."""
def __init__(
self, read_map, write_map, net_stats_map, syscall_map, history_size: int = 100
):
self.read_map = read_map
self.write_map = write_map
self.net_stats_map = net_stats_map
self.syscall_map = syscall_map
# Caching
self._cgroup_cache: Dict[int, CgroupInfo] = {}
self._cgroup_cache_time = 0
self._cache_ttl = 5.0
0 # Refresh cache every 5 seconds
# Historical data for graphing
self._history_size = history_size
self._history: Dict[int, deque] = defaultdict(
lambda: deque(maxlen=history_size)
)
def get_all_cgroups(self) -> List[CgroupInfo]:
"""Get all cgroups with caching."""
current_time = time.time()
# Use cached data if still valid
if current_time - self._cgroup_cache_time < self._cache_ttl:
return list(self._cgroup_cache.values())
# Refresh cache
self._refresh_cgroup_cache()
return list(self._cgroup_cache.values())
def _refresh_cgroup_cache(self):
"""Refresh the cgroup cache from /proc."""
cgroup_map: Dict[int, Set[str]] = defaultdict(set)
# Scan /proc to find all cgroups
for proc_dir in Path("/proc").glob("[0-9]*"):
try:
cgroup_file = proc_dir / "cgroup"
if not cgroup_file.exists():
continue
with open(cgroup_file) as f:
for line in f:
parts = line.strip().split(":")
if len(parts) >= 3:
cgroup_path = parts[2]
cgroup_mount = f"/sys/fs/cgroup{cgroup_path}"
if os.path.exists(cgroup_mount):
stat_info = os.stat(cgroup_mount)
cgroup_id = stat_info.st_ino
cgroup_map[cgroup_id].add(cgroup_path)
except (PermissionError, FileNotFoundError, OSError):
continue
# Update cache with best names
new_cache = {}
for cgroup_id, paths in cgroup_map.items():
# Pick the most descriptive path
best_path = self._get_best_cgroup_path(paths)
name = self._get_cgroup_name(best_path)
new_cache[cgroup_id] = CgroupInfo(id=cgroup_id, name=name, path=best_path)
self._cgroup_cache = new_cache
self._cgroup_cache_time = time.time()
def _get_best_cgroup_path(self, paths: Set[str]) -> str:
"""Select the most descriptive cgroup path."""
path_list = list(paths)
# Prefer paths with more components (more specific)
# Prefer paths containing docker, podman, etc.
for keyword in ["docker", "podman", "kubernetes", "k8s", "systemd"]:
for path in path_list:
if keyword in path.lower():
return path
# Return longest path (most specific)
return max(path_list, key=lambda p: (len(p.split("/")), len(p)))
def _get_cgroup_name(self, path: str) -> str:
"""Extract a friendly name from cgroup path."""
if not path or path == "/":
return "root"
# Remove leading/trailing slashes
path = path.strip("/")
# Try to extract container ID or service name
parts = path.split("/")
# For Docker: /docker/<container_id>
if "docker" in path.lower():
for i, part in enumerate(parts):
if part.lower() == "docker" and i + 1 < len(parts):
container_id = parts[i + 1][:12] # Short ID
return f"docker:{container_id}"
# For systemd services
if "system.slice" in path:
for part in parts:
if part.endswith(".service"):
return part.replace(".service", "")
# For user slices
if "user.slice" in path:
return f"user:{parts[-1]}" if parts else "user"
# Default: use last component
return parts[-1] if parts else path
def get_stats_for_cgroup(self, cgroup_id: int) -> ContainerStats:
"""Get current statistics for a specific cgroup."""
cgroup_info = self._cgroup_cache.get(cgroup_id)
cgroup_name = cgroup_info.name if cgroup_info else f"cgroup-{cgroup_id}"
stats = ContainerStats(
cgroup_id=cgroup_id, cgroup_name=cgroup_name, timestamp=time.time()
)
# Get file I/O stats
read_stat = self.read_map.lookup(cgroup_id)
if read_stat:
stats.read_ops = int(read_stat.ops)
stats.read_bytes = int(read_stat.bytes)
write_stat = self.write_map.lookup(cgroup_id)
if write_stat:
stats.write_ops = int(write_stat.ops)
stats.write_bytes = int(write_stat.bytes)
# Get network stats
net_stat = self.net_stats_map.lookup(cgroup_id)
if net_stat:
stats.rx_packets = int(net_stat.rx_packets)
stats.rx_bytes = int(net_stat.rx_bytes)
stats.tx_packets = int(net_stat.tx_packets)
stats.tx_bytes = int(net_stat.tx_bytes)
# Get syscall count
syscall_cnt = self.syscall_map.lookup(cgroup_id)
if syscall_cnt is not None:
stats.syscall_count = int(syscall_cnt)
# Add to history
self._history[cgroup_id].append(stats)
return stats
def get_history(self, cgroup_id: int) -> List[ContainerStats]:
"""Get historical statistics for graphing."""
return list(self._history[cgroup_id])
def get_cgroup_info(self, cgroup_id: int) -> Optional[CgroupInfo]:
"""Get cached cgroup information."""
return self._cgroup_cache.get(cgroup_id)

View File

@ -1,752 +0,0 @@
"""Terminal User Interface for container monitoring."""
import time
import curses
import threading
from typing import Optional, List
from data_collection import ContainerDataCollector
from web_dashboard import WebDashboard
def _safe_addstr(stdscr, y: int, x: int, text: str, *args):
"""Safely add string to screen with bounds checking."""
try:
height, width = stdscr.getmaxyx()
if 0 <= y < height and 0 <= x < width:
# Truncate text to fit
max_len = width - x - 1
if max_len > 0:
stdscr.addstr(y, x, text[:max_len], *args)
except curses.error:
pass
def _draw_fancy_header(stdscr, title: str, subtitle: str):
"""Draw a fancy header with title and subtitle."""
height, width = stdscr.getmaxyx()
# Top border
_safe_addstr(stdscr, 0, 0, "" * width, curses.color_pair(6) | curses.A_BOLD)
# Title
_safe_addstr(
stdscr,
0,
max(0, (width - len(title)) // 2),
f" {title} ",
curses.color_pair(6) | curses.A_BOLD,
)
# Subtitle
_safe_addstr(
stdscr,
1,
max(0, (width - len(subtitle)) // 2),
subtitle,
curses.color_pair(1),
)
# Bottom border
_safe_addstr(stdscr, 2, 0, "" * width, curses.color_pair(6))
def _draw_metric_box(
stdscr,
y: int,
x: int,
width: int,
label: str,
value: str,
detail: str,
color_pair: int,
):
"""Draw a fancy box for displaying a metric."""
height, _ = stdscr.getmaxyx()
if y + 4 >= height:
return
# Top border
_safe_addstr(
stdscr, y, x, "" + "" * (width - 2) + "", color_pair | curses.A_BOLD
)
# Label
_safe_addstr(stdscr, y + 1, x, "", color_pair | curses.A_BOLD)
_safe_addstr(stdscr, y + 1, x + 2, label, color_pair | curses.A_BOLD)
_safe_addstr(stdscr, y + 1, x + width - 1, "", color_pair | curses.A_BOLD)
# Value
_safe_addstr(stdscr, y + 2, x, "", color_pair | curses.A_BOLD)
_safe_addstr(stdscr, y + 2, x + 4, value, curses.color_pair(2) | curses.A_BOLD)
_safe_addstr(
stdscr,
y + 2,
min(x + width - len(detail) - 3, x + width - 2),
detail,
color_pair | curses.A_BOLD,
)
_safe_addstr(stdscr, y + 2, x + width - 1, "", color_pair | curses.A_BOLD)
# Bottom border
_safe_addstr(
stdscr, y + 3, x, "" + "" * (width - 2) + "", color_pair | curses.A_BOLD
)
def _draw_section_header(stdscr, y: int, title: str, color_pair: int):
"""Draw a section header."""
height, width = stdscr.getmaxyx()
if y >= height:
return
_safe_addstr(stdscr, y, 2, title, curses.color_pair(color_pair) | curses.A_BOLD)
_safe_addstr(
stdscr,
y,
len(title) + 3,
"" * (width - len(title) - 5),
curses.color_pair(color_pair) | curses.A_BOLD,
)
def _calculate_rates(history: List) -> dict:
"""Calculate per-second rates from history."""
if len(history) < 2:
return {
"syscalls_per_sec": 0.0,
"rx_bytes_per_sec": 0.0,
"tx_bytes_per_sec": 0.0,
"rx_pkts_per_sec": 0.0,
"tx_pkts_per_sec": 0.0,
"read_bytes_per_sec": 0.0,
"write_bytes_per_sec": 0.0,
"read_ops_per_sec": 0.0,
"write_ops_per_sec": 0.0,
}
# Calculate delta between last two samples
recent = history[-1]
previous = history[-2]
time_delta = recent.timestamp - previous.timestamp
if time_delta <= 0:
time_delta = 1.0
return {
"syscalls_per_sec": (recent.syscall_count - previous.syscall_count)
/ time_delta,
"rx_bytes_per_sec": (recent.rx_bytes - previous.rx_bytes) / time_delta,
"tx_bytes_per_sec": (recent.tx_bytes - previous.tx_bytes) / time_delta,
"rx_pkts_per_sec": (recent.rx_packets - previous.rx_packets) / time_delta,
"tx_pkts_per_sec": (recent.tx_packets - previous.tx_packets) / time_delta,
"read_bytes_per_sec": (recent.read_bytes - previous.read_bytes) / time_delta,
"write_bytes_per_sec": (recent.write_bytes - previous.write_bytes) / time_delta,
"read_ops_per_sec": (recent.read_ops - previous.read_ops) / time_delta,
"write_ops_per_sec": (recent.write_ops - previous.write_ops) / time_delta,
}
def _format_bytes(bytes_val: float) -> str:
"""Format bytes into human-readable string."""
if bytes_val < 0:
bytes_val = 0
for unit in ["B", "KB", "MB", "GB", "TB"]:
if bytes_val < 1024.0:
return f"{bytes_val:.1f}{unit}"
bytes_val /= 1024.0
return f"{bytes_val:.1f}PB"
def _draw_bar_graph_enhanced(
stdscr,
y: int,
x: int,
width: int,
height: int,
data: List[float],
color_pair: int,
):
"""Draw an enhanced bar graph with axis and scale."""
screen_height, screen_width = stdscr.getmaxyx()
if not data or width < 2 or y + height >= screen_height:
return
# Calculate statistics
max_val = max(data) if max(data) > 0 else 1
min_val = min(data)
avg_val = sum(data) / len(data)
# Take last 'width - 12' data points (leave room for Y-axis)
graph_width = max(1, width - 12)
recent_data = data[-graph_width:] if len(data) > graph_width else data
# Draw Y-axis labels (with bounds checking)
if y < screen_height:
_safe_addstr(
stdscr, y, x, f"{_format_bytes(max_val):>9}", curses.color_pair(7)
)
if y + height // 2 < screen_height:
_safe_addstr(
stdscr,
y + height // 2,
x,
f"{_format_bytes(avg_val):>9}",
curses.color_pair(7),
)
if y + height - 1 < screen_height:
_safe_addstr(
stdscr,
y + height - 1,
x,
f"{_format_bytes(min_val):>9}",
curses.color_pair(7),
)
# Draw bars
for row in range(height):
if y + row >= screen_height:
break
threshold = (height - row) / height
bar_line = ""
for val in recent_data:
normalized = val / max_val if max_val > 0 else 0
if normalized >= threshold:
bar_line += ""
elif normalized >= threshold - 0.15:
bar_line += ""
elif normalized >= threshold - 0.35:
bar_line += ""
elif normalized >= threshold - 0.5:
bar_line += ""
else:
bar_line += " "
_safe_addstr(stdscr, y + row, x + 11, bar_line, color_pair)
# Draw X-axis
if y + height < screen_height:
_safe_addstr(
stdscr,
y + height,
x + 10,
"" + "" * len(recent_data),
curses.color_pair(7),
)
_safe_addstr(
stdscr,
y + height,
x + 10 + len(recent_data),
"→ time",
curses.color_pair(7),
)
def _draw_labeled_graph(
stdscr,
y: int,
x: int,
width: int,
height: int,
label: str,
rate: str,
detail: str,
data: List[float],
color_pair: int,
description: str,
):
"""Draw a graph with labels and legend."""
screen_height, screen_width = stdscr.getmaxyx()
if y >= screen_height or y + height + 2 >= screen_height:
return
# Header with metrics
_safe_addstr(stdscr, y, x, label, curses.color_pair(1) | curses.A_BOLD)
_safe_addstr(stdscr, y, x + len(label) + 2, rate, curses.color_pair(2))
_safe_addstr(
stdscr, y, x + len(label) + len(rate) + 4, detail, curses.color_pair(7)
)
# Draw the graph
if len(data) > 1:
_draw_bar_graph_enhanced(stdscr, y + 1, x, width, height, data, color_pair)
else:
_safe_addstr(stdscr, y + 2, x + 2, "Collecting data...", curses.color_pair(7))
# Graph legend
if y + height + 1 < screen_height:
_safe_addstr(
stdscr, y + height + 1, x, f"└─ {description}", curses.color_pair(7)
)
class ContainerMonitorTUI:
"""TUI for container monitoring with cgroup selection and live graphs."""
def __init__(self, collector: ContainerDataCollector):
self.collector = collector
self.selected_cgroup: Optional[int] = None
self.current_screen = "selection" # "selection" or "monitoring"
self.selected_index = 0
self.scroll_offset = 0
self.web_dashboard = None
self.web_thread = None
def run(self):
"""Run the TUI application."""
curses.wrapper(self._main_loop)
def _main_loop(self, stdscr):
"""Main curses loop."""
# Configure curses
curses.curs_set(0) # Hide cursor
stdscr.nodelay(True) # Non-blocking input
stdscr.timeout(100) # Refresh every 100ms
# Initialize colors
curses.start_color()
curses.init_pair(1, curses.COLOR_CYAN, curses.COLOR_BLACK)
curses.init_pair(2, curses.COLOR_GREEN, curses.COLOR_BLACK)
curses.init_pair(3, curses.COLOR_YELLOW, curses.COLOR_BLACK)
curses.init_pair(4, curses.COLOR_RED, curses.COLOR_BLACK)
curses.init_pair(5, curses.COLOR_MAGENTA, curses.COLOR_BLACK)
curses.init_pair(6, curses.COLOR_WHITE, curses.COLOR_BLUE)
curses.init_pair(7, curses.COLOR_BLUE, curses.COLOR_BLACK)
curses.init_pair(8, curses.COLOR_WHITE, curses.COLOR_CYAN)
while True:
stdscr.clear()
try:
height, width = stdscr.getmaxyx()
# Check minimum terminal size
if height < 25 or width < 80:
msg = "Terminal too small! Minimum: 80x25"
stdscr.attron(curses.color_pair(4) | curses.A_BOLD)
stdscr.addstr(
height // 2, max(0, (width - len(msg)) // 2), msg[: width - 1]
)
stdscr.attroff(curses.color_pair(4) | curses.A_BOLD)
stdscr.refresh()
key = stdscr.getch()
if key == ord("q") or key == ord("Q"):
break
continue
if self.current_screen == "selection":
self._draw_selection_screen(stdscr)
elif self.current_screen == "monitoring":
self._draw_monitoring_screen(stdscr)
stdscr.refresh()
# Handle input
key = stdscr.getch()
if key != -1:
if not self._handle_input(key, stdscr):
break # Exit requested
except KeyboardInterrupt:
break
except curses.error:
# Curses error - likely terminal too small, just continue
pass
except Exception as e:
# Show error briefly
height, width = stdscr.getmaxyx()
error_msg = f"Error: {str(e)[: width - 10]}"
stdscr.addstr(0, 0, error_msg[: width - 1])
stdscr.refresh()
time.sleep(1)
def _draw_selection_screen(self, stdscr):
"""Draw the cgroup selection screen."""
height, width = stdscr.getmaxyx()
# Draw fancy header box
_draw_fancy_header(stdscr, "🐳 CONTAINER MONITOR", "Select a Cgroup to Monitor")
# Instructions
instructions = (
"↑↓: Navigate | ENTER: Select | w: Web Mode | q: Quit | r: Refresh"
)
_safe_addstr(
stdscr,
3,
max(0, (width - len(instructions)) // 2),
instructions,
curses.color_pair(3),
)
# Get cgroups
cgroups = self.collector.get_all_cgroups()
if not cgroups:
msg = "No cgroups found. Waiting for activity..."
_safe_addstr(
stdscr,
height // 2,
max(0, (width - len(msg)) // 2),
msg,
curses.color_pair(4),
)
return
# Sort cgroups by name
cgroups.sort(key=lambda c: c.name)
# Adjust selection bounds
if self.selected_index >= len(cgroups):
self.selected_index = len(cgroups) - 1
if self.selected_index < 0:
self.selected_index = 0
# Calculate visible range
list_height = max(1, height - 8)
if self.selected_index < self.scroll_offset:
self.scroll_offset = self.selected_index
elif self.selected_index >= self.scroll_offset + list_height:
self.scroll_offset = self.selected_index - list_height + 1
# Calculate max name length and ID width for alignment
max_name_len = min(50, max(len(cg.name) for cg in cgroups))
max_id_len = max(len(str(cg.id)) for cg in cgroups)
# Draw cgroup list with fancy borders
start_y = 5
_safe_addstr(
stdscr, start_y, 2, "" + "" * (width - 6) + "", curses.color_pair(1)
)
# Header row
header = f" {'CGROUP NAME':<{max_name_len}}{'ID':>{max_id_len}} "
_safe_addstr(stdscr, start_y + 1, 2, "", curses.color_pair(1))
_safe_addstr(
stdscr, start_y + 1, 3, header, curses.color_pair(1) | curses.A_BOLD
)
_safe_addstr(stdscr, start_y + 1, width - 3, "", curses.color_pair(1))
# Separator
_safe_addstr(
stdscr, start_y + 2, 2, "" + "" * (width - 6) + "", curses.color_pair(1)
)
for i in range(list_height):
idx = self.scroll_offset + i
y = start_y + 3 + i
if y >= height - 2:
break
_safe_addstr(stdscr, y, 2, "", curses.color_pair(1))
_safe_addstr(stdscr, y, width - 3, "", curses.color_pair(1))
if idx >= len(cgroups):
continue
cgroup = cgroups[idx]
# Truncate name if too long
display_name = (
cgroup.name
if len(cgroup.name) <= max_name_len
else cgroup.name[: max_name_len - 3] + "..."
)
if idx == self.selected_index:
# Highlight selected with proper alignment
line = f"{display_name:<{max_name_len}}{cgroup.id:>{max_id_len}} "
_safe_addstr(stdscr, y, 3, line, curses.color_pair(8) | curses.A_BOLD)
else:
line = f" {display_name:<{max_name_len}}{cgroup.id:>{max_id_len}} "
_safe_addstr(stdscr, y, 3, line, curses.color_pair(7))
# Bottom border
bottom_y = min(start_y + 3 + list_height, height - 3)
_safe_addstr(
stdscr, bottom_y, 2, "" + "" * (width - 6) + "", curses.color_pair(1)
)
# Footer
footer = f"Total: {len(cgroups)} cgroups"
if len(cgroups) > list_height:
footer += f" │ Showing {self.scroll_offset + 1}-{min(self.scroll_offset + list_height, len(cgroups))}"
_safe_addstr(
stdscr,
height - 2,
max(0, (width - len(footer)) // 2),
footer,
curses.color_pair(1),
)
def _draw_monitoring_screen(self, stdscr):
"""Draw the monitoring screen for selected cgroup."""
height, width = stdscr.getmaxyx()
if self.selected_cgroup is None:
return
# Get current stats
stats = self.collector.get_stats_for_cgroup(self.selected_cgroup)
history = self.collector.get_history(self.selected_cgroup)
# Draw fancy header
_draw_fancy_header(
stdscr, f"📊 {stats.cgroup_name[:40]}", "Live Performance Metrics"
)
# Instructions
instructions = "ESC/b: Back to List | w: Web Mode | q: Quit"
_safe_addstr(
stdscr,
3,
max(0, (width - len(instructions)) // 2),
instructions,
curses.color_pair(3),
)
# Calculate metrics for rate display
rates = _calculate_rates(history)
y = 5
# Syscall count in a fancy box
if y + 4 < height:
_draw_metric_box(
stdscr,
y,
2,
min(width - 4, 80),
"⚡ SYSTEM CALLS",
f"{stats.syscall_count:,}",
f"Rate: {rates['syscalls_per_sec']:.1f}/sec",
curses.color_pair(5),
)
y += 4
# Network I/O Section
if y + 8 < height:
_draw_section_header(stdscr, y, "🌐 NETWORK I/O", 1)
y += 1
# RX graph
rx_label = f"RX: {_format_bytes(stats.rx_bytes)}"
rx_rate = f"{_format_bytes(rates['rx_bytes_per_sec'])}/s"
rx_pkts = f"{stats.rx_packets:,} pkts ({rates['rx_pkts_per_sec']:.1f}/s)"
_draw_labeled_graph(
stdscr,
y,
2,
width - 4,
4,
rx_label,
rx_rate,
rx_pkts,
[s.rx_bytes for s in history],
curses.color_pair(2),
"Received Traffic (last 100 samples)",
)
y += 6
# TX graph
if y + 8 < height:
tx_label = f"TX: {_format_bytes(stats.tx_bytes)}"
tx_rate = f"{_format_bytes(rates['tx_bytes_per_sec'])}/s"
tx_pkts = f"{stats.tx_packets:,} pkts ({rates['tx_pkts_per_sec']:.1f}/s)"
_draw_labeled_graph(
stdscr,
y,
2,
width - 4,
4,
tx_label,
tx_rate,
tx_pkts,
[s.tx_bytes for s in history],
curses.color_pair(3),
"Transmitted Traffic (last 100 samples)",
)
y += 6
# File I/O Section
if y + 8 < height:
_draw_section_header(stdscr, y, "💾 FILE I/O", 1)
y += 1
# Read graph
read_label = f"READ: {_format_bytes(stats.read_bytes)}"
read_rate = f"{_format_bytes(rates['read_bytes_per_sec'])}/s"
read_ops = f"{stats.read_ops:,} ops ({rates['read_ops_per_sec']:.1f}/s)"
_draw_labeled_graph(
stdscr,
y,
2,
width - 4,
4,
read_label,
read_rate,
read_ops,
[s.read_bytes for s in history],
curses.color_pair(4),
"Read Operations (last 100 samples)",
)
y += 6
# Write graph
if y + 8 < height:
write_label = f"WRITE: {_format_bytes(stats.write_bytes)}"
write_rate = f"{_format_bytes(rates['write_bytes_per_sec'])}/s"
write_ops = f"{stats.write_ops:,} ops ({rates['write_ops_per_sec']:.1f}/s)"
_draw_labeled_graph(
stdscr,
y,
2,
width - 4,
4,
write_label,
write_rate,
write_ops,
[s.write_bytes for s in history],
curses.color_pair(5),
"Write Operations (last 100 samples)",
)
def _launch_web_mode(self, stdscr):
"""Launch web dashboard mode."""
height, width = stdscr.getmaxyx()
# Show transition message
stdscr.clear()
msg1 = "🌐 LAUNCHING WEB DASHBOARD"
_safe_addstr(
stdscr,
height // 2 - 2,
max(0, (width - len(msg1)) // 2),
msg1,
curses.color_pair(6) | curses.A_BOLD,
)
msg2 = "Server starting at http://localhost:8050"
_safe_addstr(
stdscr,
height // 2,
max(0, (width - len(msg2)) // 2),
msg2,
curses.color_pair(2),
)
msg3 = "Press 'q' to stop web server and return to TUI"
_safe_addstr(
stdscr,
height // 2 + 2,
max(0, (width - len(msg3)) // 2),
msg3,
curses.color_pair(3),
)
stdscr.refresh()
time.sleep(1)
try:
# Create and start web dashboard
self.web_dashboard = WebDashboard(
self.collector, selected_cgroup=self.selected_cgroup
)
# Start in background thread
self.web_thread = threading.Thread(
target=self.web_dashboard.run, daemon=True
)
self.web_thread.start()
time.sleep(2) # Give server time to start
# Wait for user to press 'q' to return
msg4 = "Web dashboard running at http://localhost:8050"
msg5 = "Press 'q' to return to TUI"
_safe_addstr(
stdscr,
height // 2 + 4,
max(0, (width - len(msg4)) // 2),
msg4,
curses.color_pair(1) | curses.A_BOLD,
)
_safe_addstr(
stdscr,
height // 2 + 5,
max(0, (width - len(msg5)) // 2),
msg5,
curses.color_pair(3) | curses.A_BOLD,
)
stdscr.refresh()
stdscr.nodelay(False) # Blocking mode
while True:
key = stdscr.getch()
if key == ord("q") or key == ord("Q"):
break
# Stop web server
if self.web_dashboard:
self.web_dashboard.stop()
except Exception as e:
error_msg = f"Error starting web dashboard: {str(e)}"
_safe_addstr(
stdscr,
height // 2 + 4,
max(0, (width - len(error_msg)) // 2),
error_msg,
curses.color_pair(4),
)
stdscr.refresh()
time.sleep(3)
# Restore TUI settings
stdscr.nodelay(True)
stdscr.timeout(100)
def _handle_input(self, key: int, stdscr) -> bool:
"""Handle keyboard input. Returns False to exit."""
if key == ord("q") or key == ord("Q"):
return False # Exit
if key == ord("w") or key == ord("W"):
# Launch web mode
self._launch_web_mode(stdscr)
return True
if self.current_screen == "selection":
if key == curses.KEY_UP:
self.selected_index = max(0, self.selected_index - 1)
elif key == curses.KEY_DOWN:
cgroups = self.collector.get_all_cgroups()
self.selected_index = min(len(cgroups) - 1, self.selected_index + 1)
elif key == ord("\n") or key == curses.KEY_ENTER or key == 10:
# Select cgroup
cgroups = self.collector.get_all_cgroups()
if cgroups and 0 <= self.selected_index < len(cgroups):
cgroups.sort(key=lambda c: c.name)
self.selected_cgroup = cgroups[self.selected_index].id
self.current_screen = "monitoring"
elif key == ord("r") or key == ord("R"):
# Force refresh cache
self.collector._cgroup_cache_time = 0
elif self.current_screen == "monitoring":
if key == 27 or key == ord("b") or key == ord("B"): # ESC or 'b'
self.current_screen = "selection"
self.selected_cgroup = None
return True # Continue running

View File

@ -1,826 +0,0 @@
"""Beautiful web dashboard for container monitoring using Plotly Dash."""
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from typing import Optional
from data_collection import ContainerDataCollector
class WebDashboard:
"""Beautiful web dashboard for container monitoring."""
def __init__(
self,
collector: ContainerDataCollector,
selected_cgroup: Optional[int] = None,
host: str = "0.0.0.0",
port: int = 8050,
):
self.collector = collector
self.selected_cgroup = selected_cgroup
self.host = host
self.port = port
# Suppress Dash dev tools and debug output
self.app = dash.Dash(
__name__,
title="pythonBPF Container Monitor",
suppress_callback_exceptions=True,
)
self._setup_layout()
self._setup_callbacks()
self._running = False
def _setup_layout(self):
"""Create the dashboard layout."""
self.app.layout = html.Div(
[
# Futuristic Header with pythonBPF branding
html.Div(
[
html.Div(
[
html.Div(
[
html.Span(
"python",
style={
"fontSize": "52px",
"fontWeight": "300",
"color": "#00ff88",
"fontFamily": "'Courier New', monospace",
"textShadow": "0 0 20px rgba(0,255,136,0.5)",
},
),
html.Span(
"BPF",
style={
"fontSize": "52px",
"fontWeight": "900",
"color": "#00d4ff",
"fontFamily": "'Courier New', monospace",
"textShadow": "0 0 20px rgba(0,212,255,0.5)",
},
),
],
style={"marginBottom": "5px"},
),
html.Div(
"CONTAINER PERFORMANCE MONITOR",
style={
"fontSize": "16px",
"letterSpacing": "8px",
"color": "#8899ff",
"fontWeight": "300",
"fontFamily": "'Courier New', monospace",
},
),
],
style={
"textAlign": "center",
},
),
html.Div(
id="cgroup-name",
style={
"textAlign": "center",
"color": "#00ff88",
"fontSize": "20px",
"marginTop": "15px",
"fontFamily": "'Courier New', monospace",
"fontWeight": "bold",
"textShadow": "0 0 10px rgba(0,255,136,0.3)",
},
),
],
style={
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 50%, #0a0e27 100%)",
"padding": "40px 20px",
"borderRadius": "0",
"marginBottom": "0",
"boxShadow": "0 10px 40px rgba(0,212,255,0.2)",
"border": "1px solid rgba(0,212,255,0.3)",
"borderTop": "3px solid #00d4ff",
"borderBottom": "3px solid #00ff88",
"position": "relative",
"overflow": "hidden",
},
),
# Cgroup selector (if no cgroup selected)
html.Div(
[
html.Label(
"SELECT CGROUP:",
style={
"fontSize": "14px",
"fontWeight": "bold",
"color": "#00d4ff",
"marginRight": "15px",
"fontFamily": "'Courier New', monospace",
"letterSpacing": "2px",
},
),
dcc.Dropdown(
id="cgroup-selector",
style={
"width": "600px",
"display": "inline-block",
"background": "#1a1f3a",
"border": "1px solid #00d4ff",
},
),
],
id="selector-container",
style={
"textAlign": "center",
"marginTop": "30px",
"marginBottom": "30px",
"padding": "20px",
"background": "rgba(26,31,58,0.5)",
"borderRadius": "10px",
"border": "1px solid rgba(0,212,255,0.2)",
"display": "block" if self.selected_cgroup is None else "none",
},
),
# Stats cards row
html.Div(
[
self._create_stat_card(
"syscall-card", "⚡ SYSCALLS", "#00ff88"
),
self._create_stat_card("network-card", "🌐 NETWORK", "#00d4ff"),
self._create_stat_card("file-card", "💾 FILE I/O", "#ff0088"),
],
style={
"display": "flex",
"justifyContent": "space-around",
"marginBottom": "30px",
"marginTop": "30px",
"gap": "25px",
"flexWrap": "wrap",
"padding": "0 20px",
},
),
# Graphs container
html.Div(
[
# Network graphs
html.Div(
[
html.Div(
[
html.Span("🌐 ", style={"fontSize": "24px"}),
html.Span(
"NETWORK",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"fontWeight": "bold",
},
),
html.Span(
" I/O",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"color": "#00d4ff",
},
),
],
style={
"color": "#ffffff",
"fontSize": "20px",
"borderBottom": "2px solid #00d4ff",
"paddingBottom": "15px",
"marginBottom": "25px",
"textShadow": "0 0 10px rgba(0,212,255,0.3)",
},
),
dcc.Graph(
id="network-graph", style={"height": "400px"}
),
],
style={
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 100%)",
"padding": "30px",
"borderRadius": "15px",
"boxShadow": "0 8px 32px rgba(0,212,255,0.15)",
"marginBottom": "30px",
"border": "1px solid rgba(0,212,255,0.2)",
},
),
# File I/O graphs
html.Div(
[
html.Div(
[
html.Span("💾 ", style={"fontSize": "24px"}),
html.Span(
"FILE",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"fontWeight": "bold",
},
),
html.Span(
" I/O",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"color": "#ff0088",
},
),
],
style={
"color": "#ffffff",
"fontSize": "20px",
"borderBottom": "2px solid #ff0088",
"paddingBottom": "15px",
"marginBottom": "25px",
"textShadow": "0 0 10px rgba(255,0,136,0.3)",
},
),
dcc.Graph(
id="file-io-graph", style={"height": "400px"}
),
],
style={
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 100%)",
"padding": "30px",
"borderRadius": "15px",
"boxShadow": "0 8px 32px rgba(255,0,136,0.15)",
"marginBottom": "30px",
"border": "1px solid rgba(255,0,136,0.2)",
},
),
# Combined time series
html.Div(
[
html.Div(
[
html.Span("📈 ", style={"fontSize": "24px"}),
html.Span(
"REAL-TIME",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"fontWeight": "bold",
},
),
html.Span(
" METRICS",
style={
"fontFamily": "'Courier New', monospace",
"letterSpacing": "3px",
"color": "#00ff88",
},
),
],
style={
"color": "#ffffff",
"fontSize": "20px",
"borderBottom": "2px solid #00ff88",
"paddingBottom": "15px",
"marginBottom": "25px",
"textShadow": "0 0 10px rgba(0,255,136,0.3)",
},
),
dcc.Graph(
id="timeseries-graph", style={"height": "500px"}
),
],
style={
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 100%)",
"padding": "30px",
"borderRadius": "15px",
"boxShadow": "0 8px 32px rgba(0,255,136,0.15)",
"border": "1px solid rgba(0,255,136,0.2)",
},
),
],
style={"padding": "0 20px"},
),
# Footer with pythonBPF branding
html.Div(
[
html.Div(
[
html.Span(
"Powered by ",
style={"color": "#8899ff", "fontSize": "12px"},
),
html.Span(
"pythonBPF",
style={
"color": "#00d4ff",
"fontSize": "14px",
"fontWeight": "bold",
"fontFamily": "'Courier New', monospace",
},
),
html.Span(
" | eBPF Container Monitoring",
style={
"color": "#8899ff",
"fontSize": "12px",
"marginLeft": "10px",
},
),
]
)
],
style={
"textAlign": "center",
"padding": "20px",
"marginTop": "40px",
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 100%)",
"borderTop": "1px solid rgba(0,212,255,0.2)",
},
),
# Auto-update interval
dcc.Interval(id="interval-component", interval=1000, n_intervals=0),
],
style={
"padding": "0",
"fontFamily": "'Segoe UI', 'Courier New', monospace",
"background": "linear-gradient(to bottom, #050813 0%, #0a0e27 100%)",
"minHeight": "100vh",
"margin": "0",
},
)
def _create_stat_card(self, card_id: str, title: str, color: str):
"""Create a statistics card with futuristic styling."""
return html.Div(
[
html.H3(
title,
style={
"color": color,
"fontSize": "16px",
"marginBottom": "20px",
"fontWeight": "bold",
"fontFamily": "'Courier New', monospace",
"letterSpacing": "2px",
"textShadow": f"0 0 10px {color}50",
},
),
html.Div(
[
html.Div(
id=f"{card_id}-value",
style={
"fontSize": "42px",
"fontWeight": "bold",
"color": "#ffffff",
"marginBottom": "10px",
"fontFamily": "'Courier New', monospace",
"textShadow": f"0 0 20px {color}40",
},
),
html.Div(
id=f"{card_id}-rate",
style={
"fontSize": "14px",
"color": "#8899ff",
"fontFamily": "'Courier New', monospace",
},
),
]
),
],
style={
"flex": "1",
"minWidth": "280px",
"background": "linear-gradient(135deg, #0a0e27 0%, #1a1f3a 100%)",
"padding": "30px",
"borderRadius": "15px",
"boxShadow": f"0 8px 32px {color}20",
"border": f"1px solid {color}40",
"borderLeft": f"4px solid {color}",
"transition": "transform 0.3s, box-shadow 0.3s",
"position": "relative",
"overflow": "hidden",
},
)
def _setup_callbacks(self):
"""Setup dashboard callbacks."""
@self.app.callback(
[Output("cgroup-selector", "options"), Output("cgroup-selector", "value")],
[Input("interval-component", "n_intervals")],
)
def update_cgroup_selector(n):
if self.selected_cgroup is not None:
return [], self.selected_cgroup
cgroups = self.collector.get_all_cgroups()
options = [
{"label": f"{cg.name} (ID: {cg.id})", "value": cg.id}
for cg in sorted(cgroups, key=lambda c: c.name)
]
value = options[0]["value"] if options else None
if value and self.selected_cgroup is None:
self.selected_cgroup = value
return options, self.selected_cgroup
@self.app.callback(
Output("cgroup-selector", "value", allow_duplicate=True),
[Input("cgroup-selector", "value")],
prevent_initial_call=True,
)
def select_cgroup(value):
if value:
self.selected_cgroup = value
return value
@self.app.callback(
[
Output("cgroup-name", "children"),
Output("syscall-card-value", "children"),
Output("syscall-card-rate", "children"),
Output("network-card-value", "children"),
Output("network-card-rate", "children"),
Output("file-card-value", "children"),
Output("file-card-rate", "children"),
Output("network-graph", "figure"),
Output("file-io-graph", "figure"),
Output("timeseries-graph", "figure"),
],
[Input("interval-component", "n_intervals")],
)
def update_dashboard(n):
if self.selected_cgroup is None:
empty_fig = self._create_empty_figure(
"Select a cgroup to begin monitoring"
)
return (
"SELECT A CGROUP TO START",
"0",
"",
"0 B",
"",
"0 B",
"",
empty_fig,
empty_fig,
empty_fig,
)
try:
stats = self.collector.get_stats_for_cgroup(self.selected_cgroup)
history = self.collector.get_history(self.selected_cgroup)
rates = self._calculate_rates(history)
return (
f"{stats.cgroup_name}",
f"{stats.syscall_count:,}",
f"{rates['syscalls_per_sec']:.1f} calls/sec",
f"{self._format_bytes(stats.rx_bytes + stats.tx_bytes)}",
f"{self._format_bytes(rates['rx_bytes_per_sec'])}/s ↑ {self._format_bytes(rates['tx_bytes_per_sec'])}/s",
f"{self._format_bytes(stats.read_bytes + stats.write_bytes)}",
f"R: {self._format_bytes(rates['read_bytes_per_sec'])}/s W: {self._format_bytes(rates['write_bytes_per_sec'])}/s",
self._create_network_graph(history),
self._create_file_io_graph(history),
self._create_timeseries_graph(history),
)
except Exception as e:
empty_fig = self._create_empty_figure(f"Error: {str(e)}")
return (
"ERROR",
"0",
str(e),
"0 B",
"",
"0 B",
"",
empty_fig,
empty_fig,
empty_fig,
)
def _create_empty_figure(self, message: str):
"""Create an empty figure with a message."""
fig = go.Figure()
fig.update_layout(
title=message,
template="plotly_dark",
paper_bgcolor="#0a0e27",
plot_bgcolor="#0a0e27",
font=dict(color="#8899ff", family="Courier New, monospace"),
)
return fig
def _create_network_graph(self, history):
"""Create network I/O graph with futuristic styling."""
if len(history) < 2:
return self._create_empty_figure("Collecting data...")
times = [i for i in range(len(history))]
rx_bytes = [s.rx_bytes for s in history]
tx_bytes = [s.tx_bytes for s in history]
fig = make_subplots(
rows=2,
cols=1,
subplot_titles=("RECEIVED (RX)", "TRANSMITTED (TX)"),
vertical_spacing=0.15,
)
fig.add_trace(
go.Scatter(
x=times,
y=rx_bytes,
mode="lines",
name="RX",
fill="tozeroy",
line=dict(color="#00d4ff", width=3, shape="spline"),
fillcolor="rgba(0, 212, 255, 0.2)",
),
row=1,
col=1,
)
fig.add_trace(
go.Scatter(
x=times,
y=tx_bytes,
mode="lines",
name="TX",
fill="tozeroy",
line=dict(color="#00ff88", width=3, shape="spline"),
fillcolor="rgba(0, 255, 136, 0.2)",
),
row=2,
col=1,
)
fig.update_xaxes(title_text="Time (samples)", row=2, col=1, color="#8899ff")
fig.update_yaxes(title_text="Bytes", row=1, col=1, color="#8899ff")
fig.update_yaxes(title_text="Bytes", row=2, col=1, color="#8899ff")
fig.update_layout(
height=400,
template="plotly_dark",
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="#0a0e27",
showlegend=False,
hovermode="x unified",
font=dict(family="Courier New, monospace", color="#8899ff"),
)
return fig
def _create_file_io_graph(self, history):
"""Create file I/O graph with futuristic styling."""
if len(history) < 2:
return self._create_empty_figure("Collecting data...")
times = [i for i in range(len(history))]
read_bytes = [s.read_bytes for s in history]
write_bytes = [s.write_bytes for s in history]
fig = make_subplots(
rows=2,
cols=1,
subplot_titles=("READ OPERATIONS", "WRITE OPERATIONS"),
vertical_spacing=0.15,
)
fig.add_trace(
go.Scatter(
x=times,
y=read_bytes,
mode="lines",
name="Read",
fill="tozeroy",
line=dict(color="#ff0088", width=3, shape="spline"),
fillcolor="rgba(255, 0, 136, 0.2)",
),
row=1,
col=1,
)
fig.add_trace(
go.Scatter(
x=times,
y=write_bytes,
mode="lines",
name="Write",
fill="tozeroy",
line=dict(color="#8844ff", width=3, shape="spline"),
fillcolor="rgba(136, 68, 255, 0.2)",
),
row=2,
col=1,
)
fig.update_xaxes(title_text="Time (samples)", row=2, col=1, color="#8899ff")
fig.update_yaxes(title_text="Bytes", row=1, col=1, color="#8899ff")
fig.update_yaxes(title_text="Bytes", row=2, col=1, color="#8899ff")
fig.update_layout(
height=400,
template="plotly_dark",
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="#0a0e27",
showlegend=False,
hovermode="x unified",
font=dict(family="Courier New, monospace", color="#8899ff"),
)
return fig
def _create_timeseries_graph(self, history):
"""Create combined time series graph with futuristic styling."""
if len(history) < 2:
return self._create_empty_figure("Collecting data...")
times = [i for i in range(len(history))]
fig = make_subplots(
rows=3,
cols=1,
subplot_titles=(
"SYSTEM CALLS",
"NETWORK TRAFFIC (Bytes)",
"FILE I/O (Bytes)",
),
vertical_spacing=0.1,
specs=[
[{"secondary_y": False}],
[{"secondary_y": True}],
[{"secondary_y": True}],
],
)
# Syscalls
fig.add_trace(
go.Scatter(
x=times,
y=[s.syscall_count for s in history],
mode="lines",
name="Syscalls",
line=dict(color="#00ff88", width=3, shape="spline"),
),
row=1,
col=1,
)
# Network
fig.add_trace(
go.Scatter(
x=times,
y=[s.rx_bytes for s in history],
mode="lines",
name="RX",
line=dict(color="#00d4ff", width=2, shape="spline"),
),
row=2,
col=1,
secondary_y=False,
)
fig.add_trace(
go.Scatter(
x=times,
y=[s.tx_bytes for s in history],
mode="lines",
name="TX",
line=dict(color="#00ff88", width=2, shape="spline", dash="dot"),
),
row=2,
col=1,
secondary_y=True,
)
# File I/O
fig.add_trace(
go.Scatter(
x=times,
y=[s.read_bytes for s in history],
mode="lines",
name="Read",
line=dict(color="#ff0088", width=2, shape="spline"),
),
row=3,
col=1,
secondary_y=False,
)
fig.add_trace(
go.Scatter(
x=times,
y=[s.write_bytes for s in history],
mode="lines",
name="Write",
line=dict(color="#8844ff", width=2, shape="spline", dash="dot"),
),
row=3,
col=1,
secondary_y=True,
)
fig.update_xaxes(title_text="Time (samples)", row=3, col=1, color="#8899ff")
fig.update_yaxes(title_text="Count", row=1, col=1, color="#8899ff")
fig.update_yaxes(
title_text="RX Bytes", row=2, col=1, secondary_y=False, color="#00d4ff"
)
fig.update_yaxes(
title_text="TX Bytes", row=2, col=1, secondary_y=True, color="#00ff88"
)
fig.update_yaxes(
title_text="Read Bytes", row=3, col=1, secondary_y=False, color="#ff0088"
)
fig.update_yaxes(
title_text="Write Bytes", row=3, col=1, secondary_y=True, color="#8844ff"
)
fig.update_layout(
height=500,
template="plotly_dark",
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="#0a0e27",
hovermode="x unified",
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
font=dict(color="#8899ff"),
),
font=dict(family="Courier New, monospace", color="#8899ff"),
)
return fig
def _calculate_rates(self, history):
"""Calculate rates from history."""
if len(history) < 2:
return {
"syscalls_per_sec": 0.0,
"rx_bytes_per_sec": 0.0,
"tx_bytes_per_sec": 0.0,
"read_bytes_per_sec": 0.0,
"write_bytes_per_sec": 0.0,
}
recent = history[-1]
previous = history[-2]
time_delta = recent.timestamp - previous.timestamp
if time_delta <= 0:
time_delta = 1.0
return {
"syscalls_per_sec": max(
0, (recent.syscall_count - previous.syscall_count) / time_delta
),
"rx_bytes_per_sec": max(
0, (recent.rx_bytes - previous.rx_bytes) / time_delta
),
"tx_bytes_per_sec": max(
0, (recent.tx_bytes - previous.tx_bytes) / time_delta
),
"read_bytes_per_sec": max(
0, (recent.read_bytes - previous.read_bytes) / time_delta
),
"write_bytes_per_sec": max(
0, (recent.write_bytes - previous.write_bytes) / time_delta
),
}
def _format_bytes(self, bytes_val: float) -> str:
"""Format bytes into human-readable string."""
if bytes_val < 0:
bytes_val = 0
for unit in ["B", "KB", "MB", "GB", "TB"]:
if bytes_val < 1024.0:
return f"{bytes_val:.2f} {unit}"
bytes_val /= 1024.0
return f"{bytes_val:.2f} PB"
def run(self):
"""Run the web dashboard."""
self._running = True
# Suppress Werkzeug logging
import logging
log = logging.getLogger("werkzeug")
log.setLevel(logging.ERROR)
self.app.run(debug=False, host=self.host, port=self.port, use_reloader=False)
def stop(self):
"""Stop the web dashboard."""
self._running = False

View File

@ -1,122 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "c3520e58-e50f-4bc1-8f9d-a6fecbf6e9f0",
"metadata": {},
"outputs": [],
"source": [
"from vmlinux import struct_request, struct_pt_regs\n",
"from pythonbpf import bpf, section, bpfglobal, map, BPF\n",
"from pythonbpf.helper import ktime\n",
"from pythonbpf.maps import HashMap\n",
"from ctypes import c_int64, c_uint64, c_int32\n",
"\n",
"REQ_WRITE = 1\n",
"\n",
"\n",
"@bpf\n",
"@map\n",
"def start() -> HashMap:\n",
" return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"kprobe/blk_mq_end_request\")\n",
"def trace_completion(ctx: struct_pt_regs) -> c_int64:\n",
" # Get request pointer from first argument\n",
" req_ptr = ctx.di\n",
" req = struct_request(ctx.di)\n",
" # Print: data_len, cmd_flags, latency_us\n",
" data_len = req.__data_len\n",
" cmd_flags = req.cmd_flags\n",
" # Lookup start timestamp\n",
" req_tsp = start.lookup(req_ptr)\n",
" if req_tsp:\n",
" # Calculate delta in nanoseconds\n",
" delta = ktime() - req_tsp\n",
"\n",
" # Convert to microseconds for printing\n",
" delta_us = delta // 1000\n",
"\n",
" print(f\"{data_len} {cmd_flags:x} {delta_us}\\n\")\n",
"\n",
" # Delete the entry\n",
" start.delete(req_ptr)\n",
"\n",
" return c_int64(0)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"kprobe/blk_mq_start_request\")\n",
"def trace_start(ctx1: struct_pt_regs) -> c_int32:\n",
" req = ctx1.di\n",
" ts = ktime()\n",
" start.update(req, ts)\n",
" return c_int32(0)\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"b = BPF()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97040f73-98e0-4993-94c6-125d1b42d931",
"metadata": {},
"outputs": [],
"source": [
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1bd4f51-fa25-42e1-877c-e48a2605189f",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import trace_pipe"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "96b4b59b-b0db-4952-9534-7a714f685089",
"metadata": {},
"outputs": [],
"source": [
"trace_pipe()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,58 +0,0 @@
from vmlinux import struct_request, struct_pt_regs
from pythonbpf import bpf, section, bpfglobal, compile, map
from pythonbpf.helper import ktime
from pythonbpf.maps import HashMap
from ctypes import c_int64, c_uint64, c_int32
# Constants
REQ_WRITE = 1 # from include/linux/blk_types.h
@bpf
@map
def start() -> HashMap:
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)
@bpf
@section("kprobe/blk_mq_end_request")
def trace_completion(ctx: struct_pt_regs) -> c_int64:
# Get request pointer from first argument
req_ptr = ctx.di
req = struct_request(ctx.di)
# Print: data_len, cmd_flags, latency_us
data_len = req.__data_len
cmd_flags = req.cmd_flags
# Lookup start timestamp
req_tsp = start.lookup(req_ptr)
if req_tsp:
# Calculate delta in nanoseconds
delta = ktime() - req_tsp
# Convert to microseconds for printing
delta_us = delta // 1000
print(f"{data_len} {cmd_flags:x} {delta_us}\n")
# Delete the entry
start.delete(req_ptr)
return c_int64(0)
@bpf
@section("kprobe/blk_mq_start_request")
def trace_start(ctx1: struct_pt_regs) -> c_int32:
req = ctx1.di
ts = ktime()
start.update(req, ts)
return c_int32(0)
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
compile()

View File

@ -1,83 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "28cf2e27-41e2-461c-a39c-147417141a4e",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, section, bpfglobal, BPF, trace_fields\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "133190e5-5a99-4585-b6e1-91224ed973c2",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_clone\")\n",
"def hello_world(ctx: c_void_p) -> c_int64:\n",
" print(\"Hello, World!\")\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3934efb-4043-4545-ae4c-c50ec40a24fd",
"metadata": {},
"outputs": [],
"source": [
"# header\n",
"print(f\"{'TIME(s)':<18} {'COMM':<16} {'PID':<6} {'MESSAGE'}\")\n",
"\n",
"# format output\n",
"while True:\n",
" try:\n",
" (task, pid, cpu, flags, ts, msg) = trace_fields()\n",
" except ValueError:\n",
" continue\n",
" except KeyboardInterrupt:\n",
" exit()\n",
" print(f\"{ts:<18} {task:<16} {pid:<6} {msg}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,34 +0,0 @@
from pythonbpf import bpf, section, bpfglobal, BPF, trace_fields
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
# header
print(f"{'TIME(s)':<18} {'COMM':<16} {'PID':<6} {'MESSAGE'}")
# format output
while True:
try:
(task, pid, cpu, flags, ts, msg) = trace_fields()
except ValueError:
continue
except KeyboardInterrupt:
exit()
print(f"{ts:<18} {task:<16} {pid:<6} {msg}")

View File

@ -1,110 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "79b74928-f4b4-4320-96e3-d973997de2f4",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, map, struct, section, bpfglobal, BPF\n",
"from pythonbpf.helper import ktime, pid, comm\n",
"from pythonbpf.maps import PerfEventArray\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5bdb0329-ae2d-45e8-808e-5ed5b1374204",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@struct\n",
"class data_t:\n",
" pid: c_int64\n",
" ts: c_int64\n",
" comm: str(16)\n",
"\n",
"\n",
"@bpf\n",
"@map\n",
"def events() -> PerfEventArray:\n",
" return PerfEventArray(key_size=c_int64, value_size=c_int64)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_clone\")\n",
"def hello(ctx: c_void_p) -> c_int64:\n",
" dataobj = data_t()\n",
" dataobj.pid, dataobj.ts = pid(), ktime()\n",
" comm(dataobj.comm)\n",
" events.output(dataobj)\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4bcc7d57-6cc4-48a3-bbd2-42ad6263afdf",
"metadata": {},
"outputs": [],
"source": [
"start = 0\n",
"\n",
"\n",
"def callback(cpu, event):\n",
" global start\n",
" if start == 0:\n",
" start = event.ts\n",
" ts = (event.ts - start) / 1e9\n",
" print(f\"[CPU {cpu}] PID: {event.pid}, TS: {ts}, COMM: {event.comm.decode()}\")\n",
"\n",
"\n",
"perf = b[\"events\"].open_perf_buffer(callback, struct_name=\"data_t\")\n",
"print(\"Starting to poll... (Ctrl+C to stop)\")\n",
"print(\"Try running: fork() or clone() system calls to trigger events\")\n",
"\n",
"try:\n",
" while True:\n",
" b[\"events\"].poll(1000)\n",
"except KeyboardInterrupt:\n",
" print(\"Stopping...\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,61 +0,0 @@
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime, pid, comm
from pythonbpf.maps import PerfEventArray
from ctypes import c_void_p, c_int64
@bpf
@struct
class data_t:
pid: c_int64
ts: c_int64
comm: str(16) # type: ignore [valid-type]
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_int64, value_size=c_int64)
@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def hello(ctx: c_void_p) -> c_int64:
dataobj = data_t()
dataobj.pid, dataobj.ts = pid(), ktime()
comm(dataobj.comm)
events.output(dataobj)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
start = 0
def callback(cpu, event):
global start
if start == 0:
start = event.ts
ts = (event.ts - start) / 1e9
print(f"[CPU {cpu}] PID: {event.pid}, TS: {ts}, COMM: {event.comm.decode()}")
perf = b["events"].open_perf_buffer(callback, struct_name="data_t")
print("Starting to poll... (Ctrl+C to stop)")
print("Try running: fork() or clone() system calls to trigger events")
try:
while True:
b["events"].poll(1000)
except KeyboardInterrupt:
print("Stopping...")

View File

@ -1,116 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 9,
"id": "7d5d3cfb-39ba-4516-9856-b3bed47a0cef",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "cf1c87aa-e173-4156-8f2d-762225bc6d19",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_clone\")\n",
"def hello_world(ctx: c_void_p) -> c_int64:\n",
" print(\"Hello, World!\")\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"b = BPF()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bd81383d-f75a-4269-8451-3d985d85b124",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Cache2 I/O-4716 [003] ...21 8218.000492: bpf_trace_printk: count: 11 with 4716\n",
"\n",
" Cache2 I/O-4716 [003] ...21 8218.000499: bpf_trace_printk: Hello, World!\n",
"\n",
" WebExtensions-5168 [002] ...21 8219.320392: bpf_trace_printk: count: 13 with 5168\n",
"\n",
" WebExtensions-5168 [002] ...21 8219.320399: bpf_trace_printk: Hello, World!\n",
"\n",
" python-21155 [001] ...21 8220.933716: bpf_trace_printk: count: 5 with 21155\n",
"\n",
" python-21155 [001] ...21 8220.933721: bpf_trace_printk: Hello, World!\n",
"\n",
" python-21155 [002] ...21 8221.341290: bpf_trace_printk: count: 6 with 21155\n",
"\n",
" python-21155 [002] ...21 8221.341295: bpf_trace_printk: Hello, World!\n",
"\n",
" Isolated Web Co-5462 [000] ...21 8223.095033: bpf_trace_printk: count: 7 with 5462\n",
"\n",
" Isolated Web Co-5462 [000] ...21 8223.095043: bpf_trace_printk: Hello, World!\n",
"\n",
" firefox-4542 [000] ...21 8227.760067: bpf_trace_printk: count: 8 with 4542\n",
"\n",
" firefox-4542 [000] ...21 8227.760080: bpf_trace_printk: Hello, World!\n",
"\n",
" Isolated Web Co-12404 [003] ...21 8227.917086: bpf_trace_printk: count: 7 with 12404\n",
"\n",
" Isolated Web Co-12404 [003] ...21 8227.917095: bpf_trace_printk: Hello, World!\n",
"\n"
]
}
],
"source": [
"b.load()\n",
"b.attach_all()\n",
"trace_pipe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "01e1f25b-decc-425b-a1aa-a5e701082574",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,23 +0,0 @@
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
trace_pipe()

View File

@ -1,9 +0,0 @@
# =============================================================================
# Requirements for PythonBPF BCC-Examples
# =============================================================================
dash
matplotlib
numpy
plotly
rich

View File

@ -1,107 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "dcab010c-f5e9-446f-9f9f-056cc794ad14",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, map, section, bpfglobal, BPF, trace_fields\n",
"from pythonbpf.helper import ktime\n",
"from pythonbpf.maps import HashMap\n",
"\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "720797e8-9c81-4af6-a385-80f1ec4c0f15",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@map\n",
"def last() -> HashMap:\n",
" return HashMap(key=c_int64, value=c_int64, max_entries=2)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_sync\")\n",
"def do_trace(ctx: c_void_p) -> c_int64:\n",
" ts_key, cnt_key = 0, 1\n",
" tsp, cntp = last.lookup(ts_key), last.lookup(cnt_key)\n",
" if not cntp:\n",
" last.update(cnt_key, 0)\n",
" cntp = last.lookup(cnt_key)\n",
" if tsp:\n",
" delta = ktime() - tsp\n",
" if delta < 1000000000:\n",
" time_ms = delta // 1000000\n",
" print(f\"{time_ms} {cntp}\")\n",
" last.delete(ts_key)\n",
" else:\n",
" last.update(ts_key, ktime())\n",
" last.update(cnt_key, cntp + 1)\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "78a8b82c-7c5f-43c1-9de1-cd982a0f345b",
"metadata": {},
"outputs": [],
"source": [
"print(\"Tracing for quick sync's... Ctrl-C to end\")\n",
"\n",
"# format output\n",
"start = 0\n",
"while True:\n",
" try:\n",
" task, pid, cpu, flags, ts, msg = trace_fields()\n",
" if start == 0:\n",
" start = ts\n",
" ts -= start\n",
" ms, cnt = msg.split()\n",
" print(f\"At time {ts} s: Multiple syncs detected, last {ms} ms ago. Count {cnt}\")\n",
" except KeyboardInterrupt:\n",
" exit()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,58 +0,0 @@
from pythonbpf import bpf, map, section, bpfglobal, BPF, trace_fields
from pythonbpf.helper import ktime
from pythonbpf.maps import HashMap
from ctypes import c_void_p, c_int64
@bpf
@map
def last() -> HashMap:
return HashMap(key=c_int64, value=c_int64, max_entries=2)
@bpf
@section("tracepoint/syscalls/sys_enter_sync")
def do_trace(ctx: c_void_p) -> c_int64:
ts_key, cnt_key = 0, 1
tsp, cntp = last.lookup(ts_key), last.lookup(cnt_key)
if not cntp:
last.update(cnt_key, 0)
cntp = last.lookup(cnt_key)
if tsp:
delta = ktime() - tsp
if delta < 1000000000:
time_ms = delta // 1000000
print(f"{time_ms} {cntp}")
last.delete(ts_key)
else:
last.update(ts_key, ktime())
last.update(cnt_key, cntp + 1)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
print("Tracing for quick sync's... Ctrl-C to end")
# format output
start = 0
while True:
try:
task, pid, cpu, flags, ts, msg = trace_fields()
if start == 0:
start = ts
ts -= start
ms, cnt = msg.split()
print(f"At time {ts} s: Multiple syncs detected, last {ms} ms ago. Count {cnt}")
except KeyboardInterrupt:
exit()

View File

@ -1,134 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "b0d1ab05-0c1f-4578-9c1b-568202b95a5c",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, map, struct, section, bpfglobal, BPF\n",
"from pythonbpf.helper import ktime\n",
"from pythonbpf.maps import HashMap, PerfEventArray\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "85e50d0a-f9d8-468f-8e03-f5f7128f05d8",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@struct\n",
"class data_t:\n",
" ts: c_int64\n",
" ms: c_int64\n",
"\n",
"\n",
"@bpf\n",
"@map\n",
"def events() -> PerfEventArray:\n",
" return PerfEventArray(key_size=c_int64, value_size=c_int64)\n",
"\n",
"\n",
"@bpf\n",
"@map\n",
"def last() -> HashMap:\n",
" return HashMap(key=c_int64, value=c_int64, max_entries=1)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_sync\")\n",
"def do_trace(ctx: c_void_p) -> c_int64:\n",
" dat, dat.ts, key = data_t(), ktime(), 0\n",
" tsp = last.lookup(key)\n",
" if tsp:\n",
" delta = ktime() - tsp\n",
" if delta < 1000000000:\n",
" dat.ms = delta // 1000000\n",
" events.output(dat)\n",
" last.delete(key)\n",
" else:\n",
" last.update(key, ktime())\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40bb1107-369f-4be7-9f10-37201900c16b",
"metadata": {},
"outputs": [],
"source": [
"print(\"Tracing for quick sync's... Ctrl-C to end\")\n",
"\n",
"# format output\n",
"start = 0\n",
"\n",
"\n",
"def callback(cpu, event):\n",
" global start\n",
" if start == 0:\n",
" start = event.ts\n",
" event.ts -= start\n",
" print(\n",
" f\"At time {event.ts / 1e9} s: Multiple sync detected, Last sync: {event.ms} ms ago\"\n",
" )\n",
"\n",
"\n",
"perf = b[\"events\"].open_perf_buffer(callback, struct_name=\"data_t\")\n",
"print(\"Starting to poll... (Ctrl+C to stop)\")\n",
"print(\"Try running: fork() or clone() system calls to trigger events\")\n",
"\n",
"try:\n",
" while True:\n",
" b[\"events\"].poll(1000)\n",
"except KeyboardInterrupt:\n",
" print(\"Stopping...\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "94a588d9-3a40-437c-a35b-fc40410f3eb7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,75 +0,0 @@
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime
from pythonbpf.maps import HashMap, PerfEventArray
from ctypes import c_void_p, c_int64
@bpf
@struct
class data_t:
ts: c_int64
ms: c_int64
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_int64, value_size=c_int64)
@bpf
@map
def last() -> HashMap:
return HashMap(key=c_int64, value=c_int64, max_entries=1)
@bpf
@section("tracepoint/syscalls/sys_enter_sync")
def do_trace(ctx: c_void_p) -> c_int64:
dat, dat.ts, key = data_t(), ktime(), 0
tsp = last.lookup(key)
if tsp:
delta = ktime() - tsp
if delta < 1000000000:
dat.ms = delta // 1000000
events.output(dat)
last.delete(key)
else:
last.update(key, ktime())
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
print("Tracing for quick sync's... Ctrl-C to end")
# format output
start = 0
def callback(cpu, event):
global start
if start == 0:
start = event.ts
event.ts -= start
print(
f"At time {event.ts / 1e9} s: Multiple sync detected, Last sync: {event.ms} ms ago"
)
perf = b["events"].open_perf_buffer(callback, struct_name="data_t")
print("Starting to poll... (Ctrl+C to stop)")
try:
while True:
b["events"].poll(1000)
except KeyboardInterrupt:
print("Stopping...")

View File

@ -1,102 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "bfe01ceb-2f27-41b3-b3ba-50ec65cfddda",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, map, section, bpfglobal, BPF, trace_fields\n",
"from pythonbpf.helper import ktime\n",
"from pythonbpf.maps import HashMap\n",
"\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ddb115f4-20a7-43bc-bb5b-ccbfd6031fc2",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@map\n",
"def last() -> HashMap:\n",
" return HashMap(key=c_int64, value=c_int64, max_entries=1)\n",
"\n",
"\n",
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_sync\")\n",
"def do_trace(ctx: c_void_p) -> c_int64:\n",
" key = 0\n",
" tsp = last.lookup(key)\n",
" if tsp:\n",
" delta = ktime() - tsp\n",
" if delta < 1000000000:\n",
" time_ms = delta // 1000000\n",
" print(f\"{time_ms}\")\n",
" last.delete(key)\n",
" else:\n",
" last.update(key, ktime())\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e4f46574-9fd8-46e7-9c7b-27a36d07f200",
"metadata": {},
"outputs": [],
"source": [
"print(\"Tracing for quick sync's... Ctrl-C to end\")\n",
"\n",
"# format output\n",
"start = 0\n",
"while True:\n",
" try:\n",
" task, pid, cpu, flags, ts, ms = trace_fields()\n",
" if start == 0:\n",
" start = ts\n",
" ts -= start\n",
" print(f\"At time {ts} s: Multiple syncs detected, last {ms} ms ago\")\n",
" except KeyboardInterrupt:\n",
" exit()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,53 +0,0 @@
from pythonbpf import bpf, map, section, bpfglobal, BPF, trace_fields
from pythonbpf.helper import ktime
from pythonbpf.maps import HashMap
from ctypes import c_void_p, c_int64
@bpf
@map
def last() -> HashMap:
return HashMap(key=c_int64, value=c_int64, max_entries=1)
@bpf
@section("tracepoint/syscalls/sys_enter_sync")
def do_trace(ctx: c_void_p) -> c_int64:
key = 0
tsp = last.lookup(key)
if tsp:
delta = ktime() - tsp
if delta < 1000000000:
time_ms = delta // 1000000
print(f"{time_ms}")
last.delete(key)
else:
last.update(key, ktime())
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
print("Tracing for quick sync's... Ctrl-C to end")
# format output
start = 0
while True:
try:
task, pid, cpu, flags, ts, ms = trace_fields()
if start == 0:
start = ts
ts -= start
print(f"At time {ts} s: Multiple syncs detected, last {ms} ms ago")
except KeyboardInterrupt:
exit()

View File

@ -1,73 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "bb49598f-b9cc-4ea8-8391-923cad513711",
"metadata": {},
"outputs": [],
"source": [
"from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe\n",
"from ctypes import c_void_p, c_int64"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5da237b0-1c7d-4ec5-8c24-696b1c1d97fa",
"metadata": {},
"outputs": [],
"source": [
"@bpf\n",
"@section(\"tracepoint/syscalls/sys_enter_sync\")\n",
"def hello_world(ctx: c_void_p) -> c_int64:\n",
" print(\"sys_sync() called\")\n",
" return 0\n",
"\n",
"\n",
"@bpf\n",
"@bpfglobal\n",
"def LICENSE() -> str:\n",
" return \"GPL\"\n",
"\n",
"\n",
"# Compile and load\n",
"b = BPF()\n",
"b.load()\n",
"b.attach_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e4c218ac-fe47-4fd1-a27b-c07e02f3cd05",
"metadata": {},
"outputs": [],
"source": [
"print(\"Tracing sys_sync()... Ctrl-C to end.\")\n",
"trace_pipe()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,23 +0,0 @@
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_sync")
def hello_world(ctx: c_void_p) -> c_int64:
print("sys_sync() called")
return c_int64(0)
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Compile and load
b = BPF()
b.load()
b.attach_all()
print("Tracing sys_sync()... Ctrl-C to end.")
trace_pipe()

File diff suppressed because one or more lines are too long

View File

@ -1,127 +0,0 @@
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime, pid
from pythonbpf.maps import HashMap, PerfEventArray
from ctypes import c_void_p, c_uint64
import matplotlib.pyplot as plt
import numpy as np
@bpf
@struct
class latency_event:
pid: c_uint64
delta_us: c_uint64 # Latency in microseconds
@bpf
@map
def start() -> HashMap:
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_uint64, value_size=c_uint64)
@bpf
@section("kprobe/vfs_read")
def do_entry(ctx: c_void_p) -> c_uint64:
p, ts = pid(), ktime()
start.update(p, ts)
return 0 # type: ignore [return-value]
@bpf
@section("kretprobe/vfs_read")
def do_return(ctx: c_void_p) -> c_uint64:
p = pid()
tsp = start.lookup(p)
if tsp:
delta_ns = ktime() - tsp
# Only track if latency > 1 microsecond
if delta_ns > 1000:
evt = latency_event()
evt.pid, evt.delta_us = p, delta_ns // 1000
events.output(evt)
start.delete(p)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
# Load BPF
print("Loading BPF program...")
b = BPF()
b.load()
b.attach_all()
# Collect latencies
latencies = []
def callback(cpu, event):
latencies.append(event.delta_us)
b["events"].open_perf_buffer(callback, struct_name="latency_event")
print("Tracing vfs_read latency... Hit Ctrl-C to end.")
try:
while True:
b["events"].poll(1000)
if len(latencies) > 0 and len(latencies) % 1000 == 0:
print(f"Collected {len(latencies)} samples...")
except KeyboardInterrupt:
print(f"Collected {len(latencies)} samples. Generating histogram...")
# Create histogram with matplotlib
if latencies:
# Use log scale for better visualization
log_latencies = np.log2(latencies)
plt.figure(figsize=(12, 6))
# Plot 1: Linear histogram
plt.subplot(1, 2, 1)
plt.hist(latencies, bins=50, edgecolor="black", alpha=0.7)
plt.xlabel("Latency (microseconds)")
plt.ylabel("Count")
plt.title("VFS Read Latency Distribution (Linear)")
plt.grid(True, alpha=0.3)
# Plot 2: Log2 histogram (like BCC)
plt.subplot(1, 2, 2)
plt.hist(log_latencies, bins=50, edgecolor="black", alpha=0.7, color="orange")
plt.xlabel("log2(Latency in µs)")
plt.ylabel("Count")
plt.title("VFS Read Latency Distribution (Log2)")
plt.grid(True, alpha=0.3)
# Add statistics
print("Statistics:")
print(f" Count: {len(latencies)}")
print(f" Min: {min(latencies)} µs")
print(f" Max: {max(latencies)} µs")
print(f" Mean: {np.mean(latencies):.2f} µs")
print(f" Median: {np.median(latencies):.2f} µs")
print(f" P95: {np.percentile(latencies, 95):.2f} µs")
print(f" P99: {np.percentile(latencies, 99):.2f} µs")
plt.tight_layout()
plt.savefig("vfs_read_latency.png", dpi=150)
print("Histogram saved to vfs_read_latency.png")
plt.show()
else:
print("No samples collected!")

View File

@ -1,101 +0,0 @@
"""BPF program for tracing VFS read latency."""
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime, pid
from pythonbpf.maps import HashMap, PerfEventArray
from ctypes import c_void_p, c_uint64
import argparse
from data_collector import LatencyCollector
from dashboard import LatencyDashboard
@bpf
@struct
class latency_event:
pid: c_uint64
delta_us: c_uint64
@bpf
@map
def start() -> HashMap:
"""Map to store start timestamps by PID."""
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)
@bpf
@map
def events() -> PerfEventArray:
"""Perf event array for sending latency events to userspace."""
return PerfEventArray(key_size=c_uint64, value_size=c_uint64)
@bpf
@section("kprobe/vfs_read")
def do_entry(ctx: c_void_p) -> c_uint64:
"""Record start time when vfs_read is called."""
p, ts = pid(), ktime()
start.update(p, ts)
return 0 # type: ignore [return-value]
@bpf
@section("kretprobe/vfs_read")
def do_return(ctx: c_void_p) -> c_uint64:
"""Calculate and record latency when vfs_read returns."""
p = pid()
tsp = start.lookup(p)
if tsp:
delta_ns = ktime() - tsp
# Only track latencies > 1 microsecond
if delta_ns > 1000:
evt = latency_event()
evt.pid, evt.delta_us = p, delta_ns // 1000
events.output(evt)
start.delete(p)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Monitor VFS read latency with live dashboard"
)
parser.add_argument(
"--host", default="0.0.0.0", help="Dashboard host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=8050, help="Dashboard port (default: 8050)"
)
parser.add_argument(
"--buffer", type=int, default=10000, help="Recent data buffer size"
)
return parser.parse_args()
args = parse_args()
# Load BPF program
print("Loading BPF program...")
b = BPF()
b.load()
b.attach_all()
print("✅ BPF program loaded and attached")
# Setup data collector
collector = LatencyCollector(b, buffer_size=args.buffer)
collector.start()
# Create and run dashboard
dashboard = LatencyDashboard(collector)
dashboard.run(host=args.host, port=args.port)

View File

@ -1,282 +0,0 @@
"""Plotly Dash dashboard for visualizing latency data."""
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
class LatencyDashboard:
"""Interactive dashboard for latency visualization."""
def __init__(self, collector, title: str = "VFS Read Latency Monitor"):
self.collector = collector
self.app = dash.Dash(__name__)
self.app.title = title
self._setup_layout()
self._setup_callbacks()
def _setup_layout(self):
"""Create dashboard layout."""
self.app.layout = html.Div(
[
html.H1(
"🔥 VFS Read Latency Dashboard",
style={
"textAlign": "center",
"color": "#2c3e50",
"marginBottom": 20,
},
),
# Stats cards
html.Div(
[
self._create_stat_card(
"total-samples", "📊 Total Samples", "#3498db"
),
self._create_stat_card(
"mean-latency", "⚡ Mean Latency", "#e74c3c"
),
self._create_stat_card(
"p99-latency", "🔥 P99 Latency", "#f39c12"
),
],
style={
"display": "flex",
"justifyContent": "space-around",
"marginBottom": 30,
},
),
# Graphs - ✅ Make sure these IDs match the callback outputs
dcc.Graph(id="dual-histogram", style={"height": "450px"}),
dcc.Graph(id="log2-buckets", style={"height": "350px"}),
dcc.Graph(id="timeseries-graph", style={"height": "300px"}),
# Auto-update
dcc.Interval(id="interval-component", interval=1000, n_intervals=0),
],
style={"padding": 20, "fontFamily": "Arial, sans-serif"},
)
def _create_stat_card(self, id_name: str, title: str, color: str):
"""Create a statistics card."""
return html.Div(
[
html.H3(title, style={"color": color}),
html.H2(id=id_name, style={"fontSize": 48, "color": "#2c3e50"}),
],
className="stat-box",
style={
"background": "white",
"padding": 20,
"borderRadius": 10,
"boxShadow": "0 4px 6px rgba(0,0,0,0.1)",
"textAlign": "center",
"flex": 1,
"margin": "0 10px",
},
)
def _setup_callbacks(self):
"""Setup dashboard callbacks."""
@self.app.callback(
[
Output("total-samples", "children"),
Output("mean-latency", "children"),
Output("p99-latency", "children"),
Output("dual-histogram", "figure"), # ✅ Match layout IDs
Output("log2-buckets", "figure"), # ✅ Match layout IDs
Output("timeseries-graph", "figure"), # ✅ Match layout IDs
],
[Input("interval-component", "n_intervals")],
)
def update_dashboard(n):
stats = self.collector.get_stats()
if stats.total == 0:
return self._empty_state()
return (
f"{stats.total:,}",
f"{stats.mean:.1f} µs",
f"{stats.p99:.1f} µs",
self._create_dual_histogram(),
self._create_log2_buckets(),
self._create_timeseries(),
)
def _empty_state(self):
"""Return empty state for dashboard."""
empty_fig = go.Figure()
empty_fig.update_layout(
title="Waiting for data... Generate some disk I/O!", template="plotly_white"
)
# ✅ Return 6 values (3 stats + 3 figures)
return "0", "0 µs", "0 µs", empty_fig, empty_fig, empty_fig
def _create_dual_histogram(self) -> go.Figure:
"""Create side-by-side linear and log2 histograms."""
latencies = self.collector.get_all_latencies()
# Create subplots
fig = make_subplots(
rows=1,
cols=2,
subplot_titles=("Linear Scale", "Log2 Scale"),
horizontal_spacing=0.12,
)
# Linear histogram
fig.add_trace(
go.Histogram(
x=latencies,
nbinsx=50,
marker_color="rgb(55, 83, 109)",
opacity=0.75,
name="Linear",
),
row=1,
col=1,
)
# Log2 histogram
log2_latencies = np.log2(latencies + 1) # +1 to avoid log2(0)
fig.add_trace(
go.Histogram(
x=log2_latencies,
nbinsx=30,
marker_color="rgb(243, 156, 18)",
opacity=0.75,
name="Log2",
),
row=1,
col=2,
)
# Update axes
fig.update_xaxes(title_text="Latency (µs)", row=1, col=1)
fig.update_xaxes(title_text="log2(Latency in µs)", row=1, col=2)
fig.update_yaxes(title_text="Count", row=1, col=1)
fig.update_yaxes(title_text="Count", row=1, col=2)
fig.update_layout(
title_text="📊 Latency Distribution (Linear vs Log2)",
template="plotly_white",
showlegend=False,
height=450,
)
return fig
def _create_log2_buckets(self) -> go.Figure:
"""Create bar chart of log2 buckets (like BCC histogram)."""
buckets = self.collector.get_histogram_buckets()
if not buckets:
fig = go.Figure()
fig.update_layout(
title="🔥 Log2 Histogram - Waiting for data...", template="plotly_white"
)
return fig
# Sort buckets
sorted_buckets = sorted(buckets.keys())
counts = [buckets[b] for b in sorted_buckets]
# Create labels (e.g., "8-16µs", "16-32µs")
labels = []
hover_text = []
for bucket in sorted_buckets:
lower = 2**bucket
upper = 2 ** (bucket + 1)
labels.append(f"{lower}-{upper}")
# Calculate percentage
total = sum(counts)
pct = (buckets[bucket] / total) * 100 if total > 0 else 0
hover_text.append(
f"Range: {lower}-{upper} µs<br>"
f"Count: {buckets[bucket]:,}<br>"
f"Percentage: {pct:.2f}%"
)
# Create bar chart
fig = go.Figure()
fig.add_trace(
go.Bar(
x=labels,
y=counts,
marker=dict(
color=counts,
colorscale="YlOrRd",
showscale=True,
colorbar=dict(title="Count"),
),
text=counts,
textposition="outside",
hovertext=hover_text,
hoverinfo="text",
)
)
fig.update_layout(
title="🔥 Log2 Histogram (BCC-style buckets)",
xaxis_title="Latency Range (µs)",
yaxis_title="Count",
template="plotly_white",
height=350,
xaxis=dict(tickangle=-45),
)
return fig
def _create_timeseries(self) -> go.Figure:
"""Create time series figure."""
recent = self.collector.get_recent_latencies()
if not recent:
fig = go.Figure()
fig.update_layout(
title="⏱️ Real-time Latency - Waiting for data...",
template="plotly_white",
)
return fig
times = [d["time"] for d in recent]
lats = [d["latency"] for d in recent]
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=times,
y=lats,
mode="lines",
line=dict(color="rgb(231, 76, 60)", width=2),
fill="tozeroy",
fillcolor="rgba(231, 76, 60, 0.2)",
)
)
fig.update_layout(
title="⏱️ Real-time Latency (Last 10,000 samples)",
xaxis_title="Time (seconds)",
yaxis_title="Latency (µs)",
template="plotly_white",
height=300,
)
return fig
def run(self, host: str = "0.0.0.0", port: int = 8050, debug: bool = False):
"""Run the dashboard server."""
print(f"\n{'=' * 60}")
print(f"🚀 Dashboard running at: http://{host}:{port}")
print(" Access from your browser to see live graphs")
print(
" Generate disk I/O to see data: dd if=/dev/zero of=/tmp/test bs=1M count=100"
)
print(f"{'=' * 60}\n")
self.app.run(debug=debug, host=host, port=port)

View File

@ -1,96 +0,0 @@
"""Data collection and management."""
import threading
import time
import numpy as np
from collections import deque
from dataclasses import dataclass
from typing import List, Dict
@dataclass
class LatencyStats:
"""Statistics computed from latency data."""
total: int = 0
mean: float = 0.0
median: float = 0.0
min: float = 0.0
max: float = 0.0
p95: float = 0.0
p99: float = 0.0
@classmethod
def from_array(cls, data: np.ndarray) -> "LatencyStats":
"""Compute stats from numpy array."""
if len(data) == 0:
return cls()
return cls(
total=len(data),
mean=float(np.mean(data)),
median=float(np.median(data)),
min=float(np.min(data)),
max=float(np.max(data)),
p95=float(np.percentile(data, 95)),
p99=float(np.percentile(data, 99)),
)
class LatencyCollector:
"""Collects and manages latency data from BPF."""
def __init__(self, bpf_object, buffer_size: int = 10000):
self.bpf = bpf_object
self.all_latencies: List[float] = []
self.recent_latencies = deque(maxlen=buffer_size) # type: ignore [var-annotated]
self.start_time = time.time()
self._lock = threading.Lock()
self._poll_thread = None
def callback(self, cpu: int, event):
"""Callback for BPF events."""
with self._lock:
self.all_latencies.append(event.delta_us)
self.recent_latencies.append(
{"time": time.time() - self.start_time, "latency": event.delta_us}
)
def start(self):
"""Start collecting data."""
self.bpf["events"].open_perf_buffer(self.callback, struct_name="latency_event")
def poll_loop():
while True:
self.bpf["events"].poll(100)
self._poll_thread = threading.Thread(target=poll_loop, daemon=True)
self._poll_thread.start()
print("✅ Data collection started")
def get_all_latencies(self) -> np.ndarray:
"""Get all latencies as numpy array."""
with self._lock:
return np.array(self.all_latencies) if self.all_latencies else np.array([])
def get_recent_latencies(self) -> List[Dict]:
"""Get recent latencies with timestamps."""
with self._lock:
return list(self.recent_latencies)
def get_stats(self) -> LatencyStats:
"""Compute current statistics."""
return LatencyStats.from_array(self.get_all_latencies())
def get_histogram_buckets(self) -> Dict[int, int]:
"""Get log2 histogram buckets."""
latencies = self.get_all_latencies()
if len(latencies) == 0:
return {}
log_buckets = np.floor(np.log2(latencies + 1)).astype(int)
buckets = {} # type: ignore [var-annotated]
for bucket in log_buckets:
buckets[bucket] = buckets.get(bucket, 0) + 1
return buckets

View File

@ -1,178 +0,0 @@
from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime, pid
from pythonbpf.maps import HashMap, PerfEventArray
from ctypes import c_void_p, c_uint64
from rich.console import Console
from rich.live import Live
from rich.table import Table
from rich.panel import Panel
from rich.layout import Layout
import numpy as np
import threading
import time
from collections import Counter
# ==================== BPF Setup ====================
@bpf
@struct
class latency_event:
pid: c_uint64
delta_us: c_uint64
@bpf
@map
def start() -> HashMap:
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)
@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_uint64, value_size=c_uint64)
@bpf
@section("kprobe/vfs_read")
def do_entry(ctx: c_void_p) -> c_uint64:
p, ts = pid(), ktime()
start.update(p, ts)
return 0 # type: ignore [return-value]
@bpf
@section("kretprobe/vfs_read")
def do_return(ctx: c_void_p) -> c_uint64:
p = pid()
tsp = start.lookup(p)
if tsp:
delta_ns = ktime() - tsp
if delta_ns > 1000:
evt = latency_event()
evt.pid, evt.delta_us = p, delta_ns // 1000
events.output(evt)
start.delete(p)
return 0 # type: ignore [return-value]
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
console = Console()
console.print("[bold green]Loading BPF program...[/]")
b = BPF()
b.load()
b.attach_all()
# ==================== Data Collection ====================
all_latencies = []
histogram_buckets = Counter() # type: ignore [var-annotated]
def callback(cpu, event):
all_latencies.append(event.delta_us)
# Create log2 bucket
bucket = int(np.floor(np.log2(event.delta_us + 1)))
histogram_buckets[bucket] += 1
b["events"].open_perf_buffer(callback, struct_name="latency_event")
def poll_events():
while True:
b["events"].poll(100)
poll_thread = threading.Thread(target=poll_events, daemon=True)
poll_thread.start()
# ==================== Live Display ====================
def generate_display():
layout = Layout()
layout.split_column(
Layout(name="header", size=3),
Layout(name="stats", size=8),
Layout(name="histogram", size=20),
)
# Header
layout["header"].update(
Panel("[bold cyan]🔥 VFS Read Latency Monitor[/]", style="bold white on blue")
)
# Stats
if len(all_latencies) > 0:
lats = np.array(all_latencies)
stats_table = Table(show_header=False, box=None, padding=(0, 2))
stats_table.add_column(style="bold cyan")
stats_table.add_column(style="bold yellow")
stats_table.add_row("📊 Total Samples:", f"{len(lats):,}")
stats_table.add_row("⚡ Mean Latency:", f"{np.mean(lats):.2f} µs")
stats_table.add_row("📉 Min Latency:", f"{np.min(lats):.2f} µs")
stats_table.add_row("📈 Max Latency:", f"{np.max(lats):.2f} µs")
stats_table.add_row("🎯 P95 Latency:", f"{np.percentile(lats, 95):.2f} µs")
stats_table.add_row("🔥 P99 Latency:", f"{np.percentile(lats, 99):.2f} µs")
layout["stats"].update(
Panel(stats_table, title="Statistics", border_style="green")
)
else:
layout["stats"].update(
Panel("[yellow]Waiting for data...[/]", border_style="yellow")
)
# Histogram
if histogram_buckets:
hist_table = Table(title="Latency Distribution", box=None)
hist_table.add_column("Range", style="cyan", no_wrap=True)
hist_table.add_column("Count", justify="right", style="yellow")
hist_table.add_column("Distribution", style="green")
max_count = max(histogram_buckets.values())
for bucket in sorted(histogram_buckets.keys()):
count = histogram_buckets[bucket]
lower = 2**bucket
upper = 2 ** (bucket + 1)
# Create bar
bar_width = int((count / max_count) * 40)
bar = "" * bar_width
hist_table.add_row(
f"{lower:5d}-{upper:5d} µs",
f"{count:6d}",
f"[green]{bar}[/] {count / len(all_latencies) * 100:.1f}%",
)
layout["histogram"].update(Panel(hist_table, border_style="green"))
return layout
try:
with Live(generate_display(), refresh_per_second=2, console=console) as live:
while True:
time.sleep(0.5)
live.update(generate_display())
except KeyboardInterrupt:
console.print("\n[bold red]Stopping...[/]")
if all_latencies:
console.print(f"\n[bold green]✅ Collected {len(all_latencies):,} samples[/]")

View File

@ -44,7 +44,6 @@ Python-BPF is an LLVM IR generator for eBPF programs written in Python. It uses
Dependencies:
* `bpftool`
* `clang`
* Python ≥ 3.8
@ -56,38 +55,6 @@ pip install pythonbpf pylibbpf
---
## Try It Out!
#### First, generate the vmlinux.py file for your kernel:
- Install the required dependencies:
- On Ubuntu:
```bash
sudo apt-get install bpftool clang
pip install pythonbpf pylibbpf ctypeslib2
```
- Generate the `vmlinux.py` using:
```bash
sudo tools/vmlinux-gen.py
```
- Copy this file to `BCC-Examples/`
#### Next, install requirements for BCC-Examples:
- These requirements are only required for the python notebooks, vfsreadlat and container-monitor examples.
```bash
pip install -r BCC-Examples/requirements.txt
```
- Now, follow the instructions in the [BCC-Examples/README.md](https://github.com/pythonbpf/Python-BPF/blob/master/BCC-Examples/README.md) to run the examples.
#### To spin up jupyter notebook examples:
- Run and follow the instructions on screen
```bash
curl -s https://raw.githubusercontent.com/pythonbpf/Python-BPF/refs/heads/master/tools/setup.sh | sudo bash
```
- Check the jupyter server on the web browser and run the notebooks in the `BCC-Examples/` folder.
---
## Example Usage
```python
@ -115,15 +82,16 @@ def hist() -> HashMap:
@section("tracepoint/syscalls/sys_enter_clone")
def hello(ctx: c_void_p) -> c_int64:
process_id = pid()
prev = hist.lookup(process_id)
one = 1
prev = hist().lookup(process_id)
if prev:
previous_value = prev + 1
print(f"count: {previous_value} with {process_id}")
hist.update(process_id, previous_value)
return 0
hist().update(process_id, previous_value)
return c_int64(0)
else:
hist.update(process_id, 1)
return 0
hist().update(process_id, one)
return c_int64(0)
@bpf

13
TODO.md Normal file
View File

@ -0,0 +1,13 @@
## Short term
- Implement enough functionality to port the BCC tutorial examples in PythonBPF
- Static Typing
- Add all maps
- XDP support in pylibbpf
- ringbuf support
- recursive expression resolution
## Long term
- Refactor the codebase to be better than a hackathon project
- Port to C++ and use actual LLVM?

View File

@ -21,17 +21,17 @@ def last() -> HashMap:
@section("tracepoint/syscalls/sys_enter_execve")
def do_trace(ctx: c_void_p) -> c_int64:
key = 0
tsp = last.lookup(key)
tsp = last().lookup(key)
if tsp:
kt = ktime()
delta = kt - tsp
if delta < 1000000000:
time_ms = delta // 1000000
print(f"Execve syscall entered within last second, last {time_ms} ms ago")
last.delete(key)
last().delete(key)
else:
kt = ktime()
last.update(key, kt)
last().update(key, kt)
return c_int64(0)

File diff suppressed because one or more lines are too long

View File

@ -3,6 +3,7 @@ import time
from pythonbpf import bpf, map, section, bpfglobal, BPF
from pythonbpf.helper import pid
from pythonbpf.maps import HashMap
from pylibbpf import BpfMap
from ctypes import c_void_p, c_int64, c_uint64, c_int32
import matplotlib.pyplot as plt
@ -25,14 +26,14 @@ def hist() -> HashMap:
def hello(ctx: c_void_p) -> c_int64:
process_id = pid()
one = 1
prev = hist.lookup(process_id)
prev = hist().lookup(process_id)
if prev:
previous_value = prev + 1
print(f"count: {previous_value} with {process_id}")
hist.update(process_id, previous_value)
hist().update(process_id, previous_value)
return c_int64(0)
else:
hist.update(process_id, one)
hist().update(process_id, one)
return c_int64(0)
@ -43,12 +44,12 @@ def LICENSE() -> str:
b = BPF()
b.load()
b.attach_all()
b.load_and_attach()
hist = BpfMap(b, hist)
print("Recording")
time.sleep(10)
counts = list(b["hist"].values())
counts = list(hist.values())
plt.hist(counts, bins=20)
plt.xlabel("Clone calls per PID")

View File

@ -1,4 +1,4 @@
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from pythonbpf import bpf, section, bpfglobal, BPF
from ctypes import c_void_p, c_int64
# Instructions to how to run this program
@ -21,6 +21,6 @@ def LICENSE() -> str:
b = BPF()
b.load()
b.attach_all()
trace_pipe()
b.load_and_attach()
# Now cat /sys/kernel/debug/tracing/trace_pipe to see results of the execve syscall.

View File

@ -1,29 +0,0 @@
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("kretprobe/do_unlinkat")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return c_int64(0)
@bpf
@section("kprobe/do_unlinkat")
def hello_world2(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return c_int64(0)
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load()
b.attach_all()
print("running")
trace_pipe()

View File

@ -27,7 +27,7 @@ def hello(ctx: c_void_p) -> c_int32:
dataobj.pid = pid()
dataobj.ts = ktime()
# dataobj.comm = strobj
print(f"clone called at {dataobj.ts} by pid{dataobj.pid}, comm {strobj}")
print(f"clone called at {dataobj.ts} by pid" f"{dataobj.pid}, comm {strobj}")
events.output(dataobj)
return c_int32(0)

View File

@ -21,17 +21,17 @@ def last() -> HashMap:
@section("tracepoint/syscalls/sys_enter_sync")
def do_trace(ctx: c_void_p) -> c_int64:
key = 0
tsp = last.lookup(key)
tsp = last().lookup(key)
if tsp:
kt = ktime()
delta = kt - tsp
if delta < 1000000000:
time_ms = delta // 1000000
print(f"sync called within last second, last {time_ms} ms ago")
last.delete(key)
last().delete(key)
else:
kt = ktime()
last.update(key, kt)
last().update(key, kt)
return c_int64(0)

203381
examples/vmlinux.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,8 @@
from pythonbpf import bpf, map, section, bpfglobal, compile, compile_to_ir
from pythonbpf import bpf, map, section, bpfglobal, compile
from pythonbpf.helper import XDP_PASS
from pythonbpf.maps import HashMap
from ctypes import c_int64, c_void_p
from ctypes import c_void_p, c_int64
# Instructions to how to run this program
# 1. Install PythonBPF: pip install pythonbpf
@ -23,14 +23,14 @@ def count() -> HashMap:
def hello_world(ctx: c_void_p) -> c_int64:
key = 0
one = 1
prev = count.lookup(key)
prev = count().lookup(key)
if prev:
prevval = prev + 1
print(f"count: {prevval}")
count.update(key, prevval)
count().update(key, prevval)
return XDP_PASS
else:
count.update(key, one)
count().update(key, one)
return XDP_PASS
@ -41,5 +41,4 @@ def LICENSE() -> str:
return "GPL"
compile_to_ir("xdp_pass.py", "xdp_pass.ll")
compile()

View File

@ -4,32 +4,18 @@ build-backend = "setuptools.build_meta"
[project]
name = "pythonbpf"
version = "0.1.8"
version = "0.1.3"
description = "Reduced Python frontend for eBPF"
authors = [
{ name = "r41k0u", email="pragyanshchaturvedi18@gmail.com" },
{ name = "varun-r-mallya", email="varunrmallya@gmail.com" }
]
classifiers = [
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Operating System :: POSIX :: Linux",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: System :: Operating System Kernels :: Linux",
]
readme = "README.md"
license = {text = "Apache-2.0"}
requires-python = ">=3.10"
requires-python = ">=3.8"
dependencies = [
"llvmlite>=0.45",
"llvmlite",
"astpretty",
"pylibbpf"
]

View File

@ -1,6 +1,5 @@
from .decorators import bpf, map, section, bpfglobal, struct
from .codegen import compile_to_ir, compile, BPF
from .utils import trace_pipe, trace_fields
__all__ = [
"bpf",
@ -11,6 +10,4 @@ __all__ = [
"compile_to_ir",
"compile",
"BPF",
"trace_pipe",
"trace_fields",
]

View File

@ -1,474 +0,0 @@
import ast
import logging
import ctypes
from llvmlite import ir
from .local_symbol import LocalSymbol
from pythonbpf.helper import HelperHandlerRegistry
from pythonbpf.vmlinux_parser.dependency_node import Field
from .expr import VmlinuxHandlerRegistry
from pythonbpf.type_deducer import ctypes_to_ir
from pythonbpf.maps import BPFMapType
logger = logging.getLogger(__name__)
def create_targets_and_rvals(stmt):
"""Create lists of targets and right-hand values from an assignment statement."""
if isinstance(stmt.targets[0], ast.Tuple):
if not isinstance(stmt.value, ast.Tuple):
logger.warning("Mismatched multi-target assignment, skipping allocation")
return [], []
targets, rvals = stmt.targets[0].elts, stmt.value.elts
if len(targets) != len(rvals):
logger.warning("length of LHS != length of RHS, skipping allocation")
return [], []
return targets, rvals
return stmt.targets, [stmt.value]
def handle_assign_allocation(
builder, stmt, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Handle memory allocation for assignment statements."""
logger.info(f"Handling assignment for allocation: {ast.dump(stmt)}")
# NOTE: Support multi-target assignments (e.g.: a, b = 1, 2)
targets, rvals = create_targets_and_rvals(stmt)
for target, rval in zip(targets, rvals):
# Skip non-name targets (e.g., struct field assignments)
if isinstance(target, ast.Attribute):
logger.debug(
f"Struct field assignment to {target.attr}, no allocation needed"
)
continue
if not isinstance(target, ast.Name):
logger.warning(
f"Unsupported assignment target type: {type(target).__name__}"
)
continue
var_name = target.id
# Skip if already allocated
if var_name in local_sym_tab:
logger.debug(f"Variable {var_name} already allocated, skipping")
continue
# Determine type and allocate based on rval
if isinstance(rval, ast.Call):
_allocate_for_call(
builder, var_name, rval, local_sym_tab, map_sym_tab, structs_sym_tab
)
elif isinstance(rval, ast.Constant):
_allocate_for_constant(builder, var_name, rval, local_sym_tab)
elif isinstance(rval, ast.BinOp):
_allocate_for_binop(builder, var_name, local_sym_tab)
elif isinstance(rval, ast.Name):
# Variable-to-variable assignment (b = a)
_allocate_for_name(builder, var_name, rval, local_sym_tab)
elif isinstance(rval, ast.Attribute):
# Struct field-to-variable assignment (a = dat.fld)
_allocate_for_attribute(
builder, var_name, rval, local_sym_tab, structs_sym_tab
)
else:
logger.warning(
f"Unsupported assignment value type for {var_name}: {type(rval).__name__}"
)
def _allocate_for_call(
builder, var_name, rval, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Allocate memory for variable assigned from a call."""
if isinstance(rval.func, ast.Name):
call_type = rval.func.id
# C type constructors
if call_type in ("c_int32", "c_int64", "c_uint32", "c_uint64", "c_void_p"):
ir_type = ctypes_to_ir(call_type)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} as {call_type}")
# Helper functions
elif HelperHandlerRegistry.has_handler(call_type):
ir_type = ir.IntType(64) # Assume i64 return type
var = builder.alloca(ir_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} for helper {call_type}")
# Deref function
elif call_type == "deref":
ir_type = ir.IntType(64) # Assume i64 return type
var = builder.alloca(ir_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} for deref")
# Struct constructors
elif call_type in structs_sym_tab:
struct_info = structs_sym_tab[call_type]
if len(rval.args) == 0:
# Zero-arg constructor: allocate the struct itself
var = builder.alloca(struct_info.ir_type, name=var_name)
local_sym_tab[var_name] = LocalSymbol(
var, struct_info.ir_type, call_type
)
logger.info(f"Pre-allocated {var_name} for struct {call_type}")
else:
# Pointer cast: allocate as pointer to struct
ptr_type = ir.PointerType(struct_info.ir_type)
var = builder.alloca(ptr_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ptr_type, call_type)
logger.info(
f"Pre-allocated {var_name} for struct pointer cast to {call_type}"
)
elif VmlinuxHandlerRegistry.is_vmlinux_struct(call_type):
# When calling struct_name(pointer), we're doing a cast, not construction
# So we allocate as a pointer (i64) not as the actual struct
var = builder.alloca(ir.IntType(64), name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(
var, ir.IntType(64), VmlinuxHandlerRegistry.get_struct_type(call_type)
)
logger.info(
f"Pre-allocated {var_name} for vmlinux struct pointer cast to {call_type}"
)
else:
logger.warning(f"Unknown call type for allocation: {call_type}")
elif isinstance(rval.func, ast.Attribute):
# Map method calls - need double allocation for ptr handling
_allocate_for_map_method(
builder, var_name, rval, local_sym_tab, map_sym_tab, structs_sym_tab
)
else:
logger.warning(f"Unsupported call function type for {var_name}")
def _allocate_for_map_method(
builder, var_name, rval, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Allocate memory for variable assigned from map method (double alloc)."""
map_name = rval.func.value.id
method_name = rval.func.attr
# NOTE: We will have to special case HashMap.lookup which returns a pointer to value type
# The value type can be a struct as well, so we need to handle that properly
# This special casing is not ideal, as over time other map methods may need similar handling
# But for now, we will just handle lookup specifically
if map_name not in map_sym_tab:
logger.error(f"Map '{map_name}' not found for allocation")
return
if method_name != "lookup":
# Fallback allocation for other map methods
_allocate_for_map_method_fallback(builder, var_name, local_sym_tab)
return
map_params = map_sym_tab[map_name].params
if map_params["type"] != BPFMapType.HASH:
logger.warning(
"Map method lookup used on non-hash map, using fallback allocation"
)
_allocate_for_map_method_fallback(builder, var_name, local_sym_tab)
return
value_type = map_params["value"]
# Determine IR type for value
if isinstance(value_type, str) and value_type in structs_sym_tab:
struct_info = structs_sym_tab[value_type]
value_ir_type = struct_info.ir_type
else:
value_ir_type = ctypes_to_ir(value_type)
if value_ir_type is None:
logger.warning(
f"Could not determine IR type for map value '{value_type}', using fallback allocation"
)
_allocate_for_map_method_fallback(builder, var_name, local_sym_tab)
return
# Main variable (pointer to pointer)
ir_type = ir.PointerType(ir.IntType(64))
var = builder.alloca(ir_type, name=var_name)
local_sym_tab[var_name] = LocalSymbol(var, ir_type, value_type)
# Temporary variable for computed values
tmp_ir_type = value_ir_type
var_tmp = builder.alloca(tmp_ir_type, name=f"{var_name}_tmp")
local_sym_tab[f"{var_name}_tmp"] = LocalSymbol(var_tmp, tmp_ir_type)
logger.info(
f"Pre-allocated {var_name} and {var_name}_tmp for map method lookup of type {value_ir_type}"
)
def _allocate_for_map_method_fallback(builder, var_name, local_sym_tab):
"""Fallback allocation for map method variable (i64* and i64**)."""
# Main variable (pointer to pointer)
ir_type = ir.PointerType(ir.IntType(64))
var = builder.alloca(ir_type, name=var_name)
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
# Temporary variable for computed values
tmp_ir_type = ir.IntType(64)
var_tmp = builder.alloca(tmp_ir_type, name=f"{var_name}_tmp")
local_sym_tab[f"{var_name}_tmp"] = LocalSymbol(var_tmp, tmp_ir_type)
logger.info(
f"Pre-allocated {var_name} and {var_name}_tmp for map method (fallback)"
)
def _allocate_for_constant(builder, var_name, rval, local_sym_tab):
"""Allocate memory for variable assigned from a constant."""
if isinstance(rval.value, bool):
ir_type = ir.IntType(1)
var = builder.alloca(ir_type, name=var_name)
var.align = 1
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} as bool")
elif isinstance(rval.value, int):
ir_type = ir.IntType(64)
var = builder.alloca(ir_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} as i64")
elif isinstance(rval.value, str):
ir_type = ir.PointerType(ir.IntType(8))
var = builder.alloca(ir_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} as string")
else:
logger.warning(
f"Unsupported constant type for {var_name}: {type(rval.value).__name__}"
)
def _allocate_for_binop(builder, var_name, local_sym_tab):
"""Allocate memory for variable assigned from a binary operation."""
ir_type = ir.IntType(64) # Assume i64 result
var = builder.alloca(ir_type, name=var_name)
var.align = 8
local_sym_tab[var_name] = LocalSymbol(var, ir_type)
logger.info(f"Pre-allocated {var_name} for binop result")
def _get_type_name(ir_type):
"""Get a string representation of an IR type."""
if isinstance(ir_type, ir.IntType):
return f"i{ir_type.width}"
elif isinstance(ir_type, ir.PointerType):
return "ptr"
elif isinstance(ir_type, ir.ArrayType):
return f"[{ir_type.count}x{_get_type_name(ir_type.element)}]"
else:
return str(ir_type).replace(" ", "")
def allocate_temp_pool(builder, max_temps, local_sym_tab):
"""Allocate the temporary scratch space pool for helper arguments."""
if not max_temps:
logger.info("No temp pool allocation needed")
return
for tmp_type, cnt in max_temps.items():
type_name = _get_type_name(tmp_type)
logger.info(f"Allocating temp pool of {cnt} variables of type {type_name}")
for i in range(cnt):
temp_name = f"__helper_temp_{type_name}_{i}"
temp_var = builder.alloca(tmp_type, name=temp_name)
temp_var.align = _get_alignment(tmp_type)
local_sym_tab[temp_name] = LocalSymbol(temp_var, tmp_type)
logger.debug(f"Allocated temp variable: {temp_name}")
def _allocate_for_name(builder, var_name, rval, local_sym_tab):
"""Allocate memory for variable-to-variable assignment (b = a)."""
source_var = rval.id
if source_var not in local_sym_tab:
logger.error(f"Source variable '{source_var}' not found in symbol table")
return
# Get type and metadata from source variable
source_symbol = local_sym_tab[source_var]
# Allocate with same type and alignment
var = _allocate_with_type(builder, var_name, source_symbol.ir_type)
local_sym_tab[var_name] = LocalSymbol(
var, source_symbol.ir_type, source_symbol.metadata
)
logger.info(
f"Pre-allocated {var_name} from {source_var} with type {source_symbol.ir_type}"
)
def _allocate_for_attribute(builder, var_name, rval, local_sym_tab, structs_sym_tab):
"""Allocate memory for struct field-to-variable assignment (a = dat.fld)."""
if not isinstance(rval.value, ast.Name):
logger.warning(f"Complex attribute access not supported for {var_name}")
return
struct_var = rval.value.id
field_name = rval.attr
# Validate struct and field
if struct_var not in local_sym_tab:
logger.error(f"Struct variable '{struct_var}' not found")
return
struct_type: type = local_sym_tab[struct_var].metadata
if not struct_type or struct_type not in structs_sym_tab:
if VmlinuxHandlerRegistry.is_vmlinux_struct(struct_type.__name__):
# Handle vmlinux struct field access
vmlinux_struct_name = struct_type.__name__
if not VmlinuxHandlerRegistry.has_field(vmlinux_struct_name, field_name):
logger.error(
f"Field '{field_name}' not found in vmlinux struct '{vmlinux_struct_name}'"
)
return
field_type: tuple[ir.GlobalVariable, Field] = (
VmlinuxHandlerRegistry.get_field_type(vmlinux_struct_name, field_name)
)
field_ir, field = field_type
# Determine the actual IR type based on the field's type
actual_ir_type = None
# Check if it's a ctypes primitive
if field.type.__module__ == ctypes.__name__:
try:
field_size_bytes = ctypes.sizeof(field.type)
field_size_bits = field_size_bytes * 8
if field_size_bits in [8, 16, 32, 64]:
# Special case: struct_xdp_md i32 fields should allocate as i64
# because load_ctx_field will zero-extend them to i64
if (
vmlinux_struct_name == "struct_xdp_md"
and field_size_bits == 32
):
actual_ir_type = ir.IntType(64)
logger.info(
f"Allocating {var_name} as i64 for i32 field from struct_xdp_md.{field_name} "
"(will be zero-extended during load)"
)
else:
actual_ir_type = ir.IntType(field_size_bits)
else:
logger.warning(
f"Unusual field size {field_size_bits} bits for {field_name}"
)
actual_ir_type = ir.IntType(64)
except Exception as e:
logger.warning(
f"Could not determine size for ctypes field {field_name}: {e}"
)
actual_ir_type = ir.IntType(64)
field_size_bits = 64
# Check if it's a nested vmlinux struct or complex type
elif field.type.__module__ == "vmlinux":
# For pointers to structs, use pointer type (64-bit)
if field.ctype_complex_type is not None and issubclass(
field.ctype_complex_type, ctypes._Pointer
):
actual_ir_type = ir.IntType(64) # Pointer is always 64-bit
field_size_bits = 64
# For embedded structs, this is more complex - might need different handling
else:
logger.warning(
f"Field {field_name} is a nested vmlinux struct, using i64 for now"
)
actual_ir_type = ir.IntType(64)
field_size_bits = 64
else:
logger.warning(
f"Unknown field type module {field.type.__module__} for {field_name}"
)
actual_ir_type = ir.IntType(64)
field_size_bits = 64
# Pre-allocate the tmp storage used by load_struct_field (so we don't alloca inside handler)
tmp_name = f"{struct_var}_{field_name}_tmp"
tmp_ir_type = ir.IntType(field_size_bits)
tmp_var = builder.alloca(tmp_ir_type, name=tmp_name)
tmp_var.align = tmp_ir_type.width // 8
local_sym_tab[tmp_name] = LocalSymbol(tmp_var, tmp_ir_type)
logger.info(
f"Pre-allocated temp {tmp_name} (i{field_size_bits}) for vmlinux field read {vmlinux_struct_name}.{field_name}"
)
# Allocate with the actual IR type for the destination var
var = _allocate_with_type(builder, var_name, actual_ir_type)
local_sym_tab[var_name] = LocalSymbol(var, actual_ir_type, field)
logger.info(
f"Pre-allocated {var_name} as {actual_ir_type} from vmlinux struct {vmlinux_struct_name}.{field_name}"
)
return
else:
logger.error(f"Struct type '{struct_type}' not found")
return
struct_info = structs_sym_tab[struct_type]
if field_name not in struct_info.fields:
logger.error(f"Field '{field_name}' not found in struct '{struct_type}'")
return
# Get field type
field_type = struct_info.field_type(field_name)
# Special case: char array -> allocate as i8* pointer instead
if (
isinstance(field_type, ir.ArrayType)
and isinstance(field_type.element, ir.IntType)
and field_type.element.width == 8
):
alloc_type = ir.PointerType(ir.IntType(8))
logger.info(f"Allocating {var_name} as i8* (pointer to char array)")
else:
alloc_type = field_type
var = _allocate_with_type(builder, var_name, alloc_type)
local_sym_tab[var_name] = LocalSymbol(var, alloc_type)
logger.info(
f"Pre-allocated {var_name} from {struct_var}.{field_name} with type {alloc_type}"
)
def _allocate_with_type(builder, var_name, ir_type):
"""Allocate variable with appropriate alignment for type."""
var = builder.alloca(ir_type, name=var_name)
var.align = _get_alignment(ir_type)
return var
def _get_alignment(ir_type):
"""Get appropriate alignment for IR type."""
if isinstance(ir_type, ir.IntType):
return ir_type.width // 8
elif isinstance(ir_type, ir.ArrayType) and isinstance(ir_type.element, ir.IntType):
return ir_type.element.width // 8
else:
return 8 # Default: pointer size

View File

@ -1,293 +0,0 @@
import ast
import logging
from inspect import isclass
from llvmlite import ir
from pythonbpf.expr import eval_expr
from pythonbpf.helper import emit_probe_read_kernel_str_call
from pythonbpf.type_deducer import ctypes_to_ir
from pythonbpf.vmlinux_parser.dependency_node import Field
logger = logging.getLogger(__name__)
def handle_struct_field_assignment(
func, module, builder, target, rval, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Handle struct field assignment (obj.field = value)."""
var_name = target.value.id
field_name = target.attr
if var_name not in local_sym_tab:
logger.error(f"Variable '{var_name}' not found in symbol table")
return
struct_type = local_sym_tab[var_name].metadata
struct_info = structs_sym_tab[struct_type]
if field_name not in struct_info.fields:
logger.error(f"Field '{field_name}' not found in struct '{struct_type}'")
return
# Get field pointer and evaluate value
field_ptr = struct_info.gep(builder, local_sym_tab[var_name].var, field_name)
field_type = struct_info.field_type(field_name)
val_result = eval_expr(
func, module, builder, rval, local_sym_tab, map_sym_tab, structs_sym_tab
)
if val_result is None:
logger.error(f"Failed to evaluate value for {var_name}.{field_name}")
return
val, val_type = val_result
# Special case: i8* string to [N x i8] char array
if _is_char_array(field_type) and _is_i8_ptr(val_type):
_copy_string_to_char_array(
func,
module,
builder,
val,
field_ptr,
field_type,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
logger.info(f"Copied string to char array {var_name}.{field_name}")
return
# Regular assignment
builder.store(val, field_ptr)
logger.info(f"Assigned to struct field {var_name}.{field_name}")
def _copy_string_to_char_array(
func,
module,
builder,
src_ptr,
dst_ptr,
array_type,
local_sym_tab,
map_sym_tab,
struct_sym_tab,
):
"""Copy string (i8*) to char array ([N x i8]) using bpf_probe_read_kernel_str"""
array_size = array_type.count
# Get pointer to first element: [N x i8]* -> i8*
dst_i8_ptr = builder.gep(
dst_ptr,
[ir.Constant(ir.IntType(32), 0), ir.Constant(ir.IntType(32), 0)],
inbounds=True,
)
# Use the shared emitter function
emit_probe_read_kernel_str_call(builder, dst_i8_ptr, array_size, src_ptr)
def _is_char_array(ir_type):
"""Check if type is [N x i8]."""
return (
isinstance(ir_type, ir.ArrayType)
and isinstance(ir_type.element, ir.IntType)
and ir_type.element.width == 8
)
def _is_i8_ptr(ir_type):
"""Check if type is i8*."""
return (
isinstance(ir_type, ir.PointerType)
and isinstance(ir_type.pointee, ir.IntType)
and ir_type.pointee.width == 8
)
def handle_variable_assignment(
func, module, builder, var_name, rval, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Handle single named variable assignment."""
if var_name not in local_sym_tab:
logger.error(f"Variable {var_name} not declared.")
return False
var_ptr = local_sym_tab[var_name].var
var_type = local_sym_tab[var_name].ir_type
# NOTE: Special case for struct initialization
if isinstance(rval, ast.Call) and isinstance(rval.func, ast.Name):
struct_name = rval.func.id
if struct_name in structs_sym_tab and len(rval.args) == 0:
struct_info = structs_sym_tab[struct_name]
ir_struct = struct_info.ir_type
builder.store(ir.Constant(ir_struct, None), var_ptr)
logger.info(f"Initialized struct {struct_name} for variable {var_name}")
return True
# Special case: struct field char array -> pointer
# Handle this before eval_expr to get the pointer, not the value
if isinstance(rval, ast.Attribute) and isinstance(rval.value, ast.Name):
converted_val = _try_convert_char_array_to_ptr(
rval, var_type, builder, local_sym_tab, structs_sym_tab
)
if converted_val is not None:
builder.store(converted_val, var_ptr)
logger.info(f"Assigned char array pointer to {var_name}")
return True
val_result = eval_expr(
func, module, builder, rval, local_sym_tab, map_sym_tab, structs_sym_tab
)
if val_result is None:
logger.error(f"Failed to evaluate value for {var_name}")
return False
val, val_type = val_result
logger.info(
f"Evaluated value for {var_name}: {val} of type {val_type}, expected {var_type}"
)
if val_type != var_type:
# Handle vmlinux struct pointers - they're represented as Python classes but are i64 pointers
if isclass(val_type) and (val_type.__module__ == "vmlinux"):
logger.info("Handling vmlinux struct pointer assignment")
# vmlinux struct pointers: val is a pointer, need to convert to i64
if isinstance(var_type, ir.IntType) and var_type.width == 64:
# Convert pointer to i64 using ptrtoint
if isinstance(val.type, ir.PointerType):
val = builder.ptrtoint(val, ir.IntType(64))
logger.info(
"Converted vmlinux struct pointer to i64 using ptrtoint"
)
builder.store(val, var_ptr)
logger.info(f"Assigned vmlinux struct pointer to {var_name} (i64)")
return True
else:
logger.error(
f"Type mismatch: vmlinux struct pointer requires i64, got {var_type}"
)
return False
# Handle user-defined struct pointer casts
# val_type is a string (struct name), var_type is a pointer to the struct
if isinstance(val_type, str) and val_type in structs_sym_tab:
struct_info = structs_sym_tab[val_type]
expected_ptr_type = ir.PointerType(struct_info.ir_type)
# Check if var_type matches the expected pointer type
if isinstance(var_type, ir.PointerType) and var_type == expected_ptr_type:
# val is already the correct pointer type from inttoptr/bitcast
builder.store(val, var_ptr)
logger.info(f"Assigned user-defined struct pointer cast to {var_name}")
return True
else:
logger.error(
f"Type mismatch: user-defined struct pointer cast requires pointer type, got {var_type}"
)
return False
if isinstance(val_type, Field):
logger.info("Handling assignment to struct field")
# Special handling for struct_xdp_md i32 fields that are zero-extended to i64
# The load_ctx_field already extended them, so val is i64 but val_type.type shows c_uint
if (
hasattr(val_type, "type")
and val_type.type.__name__ == "c_uint"
and isinstance(var_type, ir.IntType)
and var_type.width == 64
):
# This is the struct_xdp_md case - value is already i64
builder.store(val, var_ptr)
logger.info(
f"Assigned zero-extended struct_xdp_md i32 field to {var_name} (i64)"
)
return True
# TODO: handling only ctype struct fields for now. Handle other stuff too later.
elif var_type == ctypes_to_ir(val_type.type.__name__):
builder.store(val, var_ptr)
logger.info(f"Assigned ctype struct field to {var_name}")
return True
else:
logger.error(
f"Failed to assign ctype struct field to {var_name}: {val_type} != {var_type}"
)
return False
elif isinstance(val_type, ir.IntType) and isinstance(var_type, ir.IntType):
# Allow implicit int widening
if val_type.width < var_type.width:
val = builder.sext(val, var_type)
logger.info(f"Implicitly widened int for variable {var_name}")
elif val_type.width > var_type.width:
val = builder.trunc(val, var_type)
logger.info(f"Implicitly truncated int for variable {var_name}")
elif isinstance(val_type, ir.IntType) and isinstance(var_type, ir.PointerType):
# NOTE: This is assignment to a PTR_TO_MAP_VALUE_OR_NULL
logger.info(
f"Creating temporary variable for pointer assignment to {var_name}"
)
var_ptr_tmp = local_sym_tab[f"{var_name}_tmp"].var
builder.store(val, var_ptr_tmp)
val = var_ptr_tmp
else:
logger.error(
f"Type mismatch for variable {var_name}: {val_type} vs {var_type}"
)
return False
builder.store(val, var_ptr)
logger.info(f"Assigned value to variable {var_name}")
return True
def _try_convert_char_array_to_ptr(
rval, var_type, builder, local_sym_tab, structs_sym_tab
):
"""Try to convert char array field to i8* pointer"""
# Only convert if target is i8*
if not (
isinstance(var_type, ir.PointerType)
and isinstance(var_type.pointee, ir.IntType)
and var_type.pointee.width == 8
):
return None
struct_var = rval.value.id
field_name = rval.attr
# Validate struct
if struct_var not in local_sym_tab:
return None
struct_type = local_sym_tab[struct_var].metadata
if not struct_type or struct_type not in structs_sym_tab:
return None
struct_info = structs_sym_tab[struct_type]
if field_name not in struct_info.fields:
return None
field_type = struct_info.field_type(field_name)
# Check if it's a char array
if not (
isinstance(field_type, ir.ArrayType)
and isinstance(field_type.element, ir.IntType)
and field_type.element.width == 8
):
return None
# Get pointer to struct field
struct_ptr = local_sym_tab[struct_var].var
field_ptr = struct_info.gep(builder, struct_ptr, field_name)
# GEP to first element: [N x i8]* -> i8*
return builder.gep(
field_ptr,
[ir.Constant(ir.IntType(32), 0), ir.Constant(ir.IntType(32), 0)],
inbounds=True,
)

71
pythonbpf/binary_ops.py Normal file
View File

@ -0,0 +1,71 @@
import ast
from llvmlite import ir
def recursive_dereferencer(var, builder):
"""dereference until primitive type comes out"""
if var.type == ir.PointerType(ir.PointerType(ir.IntType(64))):
a = builder.load(var)
return recursive_dereferencer(a, builder)
elif var.type == ir.PointerType(ir.IntType(64)):
a = builder.load(var)
return recursive_dereferencer(a, builder)
elif var.type == ir.IntType(64):
return var
else:
raise TypeError(f"Unsupported type for dereferencing: {var.type}")
def handle_binary_op(rval, module, builder, var_name, local_sym_tab, map_sym_tab, func):
print(module)
left = rval.left
right = rval.right
op = rval.op
# Handle left operand
if isinstance(left, ast.Name):
if left.id in local_sym_tab:
left = recursive_dereferencer(local_sym_tab[left.id][0], builder)
else:
raise SyntaxError(f"Undefined variable: {left.id}")
elif isinstance(left, ast.Constant):
left = ir.Constant(ir.IntType(64), left.value)
else:
raise SyntaxError("Unsupported left operand type")
if isinstance(right, ast.Name):
if right.id in local_sym_tab:
right = recursive_dereferencer(local_sym_tab[right.id][0], builder)
else:
raise SyntaxError(f"Undefined variable: {right.id}")
elif isinstance(right, ast.Constant):
right = ir.Constant(ir.IntType(64), right.value)
else:
raise SyntaxError("Unsupported right operand type")
print(f"left is {left}, right is {right}, op is {op}")
if isinstance(op, ast.Add):
builder.store(builder.add(left, right), local_sym_tab[var_name][0])
elif isinstance(op, ast.Sub):
builder.store(builder.sub(left, right), local_sym_tab[var_name][0])
elif isinstance(op, ast.Mult):
builder.store(builder.mul(left, right), local_sym_tab[var_name][0])
elif isinstance(op, ast.Div):
builder.store(builder.sdiv(left, right), local_sym_tab[var_name][0])
elif isinstance(op, ast.Mod):
builder.store(builder.srem(left, right), local_sym_tab[var_name][0])
elif isinstance(op, ast.LShift):
builder.store(builder.shl(left, right), local_sym_tab[var_name][0])
elif isinstance(op, ast.RShift):
builder.store(builder.lshr(left, right), local_sym_tab[var_name][0])
elif isinstance(op, ast.BitOr):
builder.store(builder.or_(left, right), local_sym_tab[var_name][0])
elif isinstance(op, ast.BitXor):
builder.store(builder.xor(left, right), local_sym_tab[var_name][0])
elif isinstance(op, ast.BitAnd):
builder.store(builder.and_(left, right), local_sym_tab[var_name][0])
elif isinstance(op, ast.FloorDiv):
builder.store(builder.udiv(left, right), local_sym_tab[var_name][0])
else:
raise SyntaxError("Unsupported binary operation")

View File

@ -1,58 +1,19 @@
import ast
from llvmlite import ir
from .license_pass import license_processing
from .functions import func_proc
from .functions_pass import func_proc
from .maps import maps_proc
from .structs import structs_proc
from .vmlinux_parser import vmlinux_proc
from pythonbpf.vmlinux_parser.vmlinux_exports_handler import VmlinuxHandler
from .expr import VmlinuxHandlerRegistry
from .globals_pass import (
globals_list_creation,
globals_processing,
populate_global_symbol_table,
)
from .debuginfo import DW_LANG_C11, DwarfBehaviorEnum, DebugInfoGenerator
from .globals_pass import globals_processing
from .debuginfo import DW_LANG_C11, DwarfBehaviorEnum
import os
import subprocess
import inspect
from pathlib import Path
from pylibbpf import BpfObject
from pylibbpf import BpfProgram
import tempfile
from logging import Logger
import logging
import re
logger: Logger = logging.getLogger(__name__)
VERSION = "v0.1.8"
def finalize_module(original_str):
"""After all IR generation is complete, we monkey patch btf_ama attribute"""
# Create a string with applied transformation of btf_ama attribute addition to BTF struct field accesses.
pattern = r'(@"llvm\.[^"]+:[^"]*" = external global i64, !llvm\.preserve\.access\.index ![0-9]+)'
replacement = r'\1 "btf_ama"'
return re.sub(pattern, replacement, original_str)
def bpf_passthrough_gen(module):
i32_ty = ir.IntType(32)
ptr_ty = ir.PointerType(ir.IntType(8))
fnty = ir.FunctionType(ptr_ty, [i32_ty, ptr_ty])
# Declare the intrinsic
passthrough = ir.Function(module, fnty, "llvm.bpf.passthrough.p0.p0")
# Set function attributes
# TODO: the ones commented are supposed to be there but cannot be added due to llvmlite limitations at the moment
# passthrough.attributes.add("nofree")
# passthrough.attributes.add("nosync")
passthrough.attributes.add("nounwind")
# passthrough.attributes.add("memory(none)")
return passthrough
VERSION = "v0.1.3"
def find_bpf_chunks(tree):
@ -69,34 +30,21 @@ def find_bpf_chunks(tree):
def processor(source_code, filename, module):
tree = ast.parse(source_code, filename)
logger.debug(ast.dump(tree, indent=4))
print(ast.dump(tree, indent=4))
bpf_chunks = find_bpf_chunks(tree)
for func_node in bpf_chunks:
logger.info(f"Found BPF function/struct: {func_node.name}")
print(f"Found BPF function/struct: {func_node.name}")
bpf_passthrough_gen(module)
vmlinux_symtab = vmlinux_proc(tree, module)
if vmlinux_symtab:
handler = VmlinuxHandler.initialize(vmlinux_symtab)
VmlinuxHandlerRegistry.set_handler(handler)
populate_global_symbol_table(tree, module)
license_processing(tree, module)
globals_processing(tree, module)
structs_sym_tab = structs_proc(tree, module, bpf_chunks)
map_sym_tab = maps_proc(tree, module, bpf_chunks, structs_sym_tab)
map_sym_tab = maps_proc(tree, module, bpf_chunks)
func_proc(tree, module, bpf_chunks, map_sym_tab, structs_sym_tab)
globals_list_creation(tree, module)
return structs_sym_tab, map_sym_tab
license_processing(tree, module)
globals_processing(tree, module)
def compile_to_ir(filename: str, output: str, loglevel=logging.INFO):
logging.basicConfig(
level=loglevel, format="%(asctime)s [%(levelname)s] %(name)s: %(message)s"
)
def compile_to_ir(filename: str, output: str):
with open(filename) as f:
source = f.read()
@ -105,18 +53,34 @@ def compile_to_ir(filename: str, output: str, loglevel=logging.INFO):
module.triple = "bpf"
if not hasattr(module, "_debug_compile_unit"):
debug_generator = DebugInfoGenerator(module)
debug_generator.generate_file_metadata(filename, os.path.dirname(filename))
debug_generator.generate_debug_cu(
DW_LANG_C11,
f"PythonBPF {VERSION}",
True, # TODO: This is probably not true
# TODO: add a global field here that keeps track of all the globals. Works without it, but I think it might
# be required for kprobes.
True,
module._file_metadata = module.add_debug_info(
"DIFile",
{ # type: ignore
"filename": filename,
"directory": os.path.dirname(filename),
},
)
structs_sym_tab, maps_sym_tab = processor(source, filename, module)
module._debug_compile_unit = module.add_debug_info(
"DICompileUnit",
{ # type: ignore
"language": DW_LANG_C11,
"file": module._file_metadata, # type: ignore
"producer": f"PythonBPF {VERSION}",
"isOptimized": True, # TODO: This is probably not true
# TODO: add a global field here that keeps track of all the globals. Works without it, but I think it might
# be required for kprobes.
"runtimeVersion": 0,
"emissionKind": 1,
"splitDebugInlining": False,
"nameTableKind": 0,
},
is_distinct=True,
)
module.add_named_metadata("llvm.dbg.cu", module._debug_compile_unit) # type: ignore
processor(source, filename, module)
wchar_size = module.add_metadata(
[
@ -157,45 +121,16 @@ def compile_to_ir(filename: str, output: str, loglevel=logging.INFO):
module.add_named_metadata("llvm.ident", [f"PythonBPF {VERSION}"])
module_string: str = finalize_module(str(module))
logger.info(f"IR written to {output}")
print(f"IR written to {output}")
with open(output, "w") as f:
f.write(f'source_filename = "{filename}"\n')
f.write(module_string)
f.write(str(module))
f.write("\n")
return output, structs_sym_tab, maps_sym_tab
return output
def _run_llc(ll_file, obj_file):
"""Compile LLVM IR to BPF object file using llc."""
logger.info(f"Compiling IR to object: {ll_file} -> {obj_file}")
result = subprocess.run(
[
"llc",
"-march=bpf",
"-filetype=obj",
"-O2",
str(ll_file),
"-o",
str(obj_file),
],
check=True,
capture_output=True,
text=True,
)
if result.returncode == 0:
logger.info(f"Object file written to {obj_file}")
return True
else:
logger.error(f"llc compilation failed: {result.stderr}")
return False
def compile(loglevel=logging.WARNING) -> bool:
def compile() -> bool:
# Look one level up the stack to the caller of this function
caller_frame = inspect.stack()[1]
caller_file = Path(caller_frame.filename).resolve()
@ -203,32 +138,54 @@ def compile(loglevel=logging.WARNING) -> bool:
ll_file = Path("/tmp") / caller_file.with_suffix(".ll").name
o_file = caller_file.with_suffix(".o")
_, structs_sym_tab, maps_sym_tab = compile_to_ir(
str(caller_file), str(ll_file), loglevel=loglevel
success = True
success = compile_to_ir(str(caller_file), str(ll_file)) and success
success = bool(
subprocess.run(
[
"llc",
"-march=bpf",
"-filetype=obj",
"-O2",
str(ll_file),
"-o",
str(o_file),
],
check=True,
)
and success
)
if not _run_llc(ll_file, o_file):
logger.error("Compilation to object file failed.")
return False
logger.info(f"Object written to {o_file}")
return True
print(f"Object written to {o_file}")
return success
def BPF(loglevel=logging.WARNING) -> BpfObject:
def BPF() -> BpfProgram:
caller_frame = inspect.stack()[1]
src = inspect.getsource(caller_frame.frame)
with (
tempfile.NamedTemporaryFile(mode="w+", delete=True, suffix=".py") as f,
tempfile.NamedTemporaryFile(mode="w+", delete=True, suffix=".ll") as inter,
tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".o") as obj_file,
):
with tempfile.NamedTemporaryFile(
mode="w+", delete=True, suffix=".py"
) as f, tempfile.NamedTemporaryFile(
mode="w+", delete=True, suffix=".ll"
) as inter, tempfile.NamedTemporaryFile(
mode="w+", delete=False, suffix=".o"
) as obj_file:
f.write(src)
f.flush()
source = f.name
_, structs_sym_tab, maps_sym_tab = compile_to_ir(
source, str(inter.name), loglevel=loglevel
compile_to_ir(source, str(inter.name))
subprocess.run(
[
"llc",
"-march=bpf",
"-filetype=obj",
"-O2",
str(inter.name),
"-o",
str(obj_file.name),
],
check=True,
)
_run_llc(str(inter.name), str(obj_file.name))
return BpfObject(str(obj_file.name), structs=structs_sym_tab)
return BpfProgram(str(obj_file.name))

View File

@ -12,34 +12,6 @@ class DebugInfoGenerator:
self.module = module
self._type_cache = {} # Cache for common debug types
def generate_file_metadata(self, filename, dirname):
self.module._file_metadata = self.module.add_debug_info(
"DIFile",
{ # type: ignore
"filename": filename,
"directory": dirname,
},
)
def generate_debug_cu(
self, language, producer: str, is_optimized: bool, is_distinct: bool
):
self.module._debug_compile_unit = self.module.add_debug_info(
"DICompileUnit",
{ # type: ignore
"language": language,
"file": self.module._file_metadata, # type: ignore
"producer": producer,
"isOptimized": is_optimized,
"runtimeVersion": 0,
"emissionKind": 1,
"splitDebugInlining": False,
"nameTableKind": 0,
},
is_distinct=is_distinct,
)
self.module.add_named_metadata("llvm.dbg.cu", self.module._debug_compile_unit) # type: ignore
def get_basic_type(self, name: str, size: int, encoding: int) -> Any:
"""Get or create a basic type with caching"""
key = (name, size, encoding)
@ -49,10 +21,6 @@ class DebugInfoGenerator:
)
return self._type_cache[key]
def get_uint8_type(self) -> Any:
"""Get debug info for signed 8-bit integer"""
return self.get_basic_type("char", 8, dc.DW_ATE_unsigned)
def get_int32_type(self) -> Any:
"""Get debug info for signed 32-bit integer"""
return self.get_basic_type("int", 32, dc.DW_ATE_signed)
@ -85,20 +53,6 @@ class DebugInfoGenerator:
},
)
def create_array_type_vmlinux(self, type_info: Any, count: int) -> Any:
"""Create an array type of the given base type with specified count"""
base_type, type_sizing = type_info
subrange = self.module.add_debug_info("DISubrange", {"count": count})
return self.module.add_debug_info(
"DICompositeType",
{
"tag": dc.DW_TAG_array_type,
"baseType": base_type,
"size": type_sizing,
"elements": [subrange],
},
)
@staticmethod
def _compute_array_size(base_type: Any, count: int) -> int:
# Extract size from base_type if possible
@ -119,23 +73,6 @@ class DebugInfoGenerator:
},
)
def create_struct_member_vmlinux(
self, name: str, base_type_with_size: Any, offset: int
) -> Any:
"""Create a struct member with the given name, type, and offset"""
base_type, type_size = base_type_with_size
return self.module.add_debug_info(
"DIDerivedType",
{
"tag": dc.DW_TAG_member,
"name": name,
"file": self.module._file_metadata,
"baseType": base_type,
"size": type_size,
"offset": offset,
},
)
def create_struct_type(
self, members: List[Any], size: int, is_distinct: bool
) -> Any:
@ -151,22 +88,6 @@ class DebugInfoGenerator:
is_distinct=is_distinct,
)
def create_struct_type_with_name(
self, name: str, members: List[Any], size: int, is_distinct: bool
) -> Any:
"""Create a struct type with the given members and size"""
return self.module.add_debug_info(
"DICompositeType",
{
"name": name,
"tag": dc.DW_TAG_structure_type,
"file": self.module._file_metadata,
"size": size,
"elements": members,
},
is_distinct=is_distinct,
)
def create_global_var_debug_info(
self, name: str, var_type: Any, is_local: bool = False
) -> Any:
@ -188,83 +109,3 @@ class DebugInfoGenerator:
"DIGlobalVariableExpression",
{"var": global_var, "expr": self.module.add_debug_info("DIExpression", {})},
)
def get_int64_type(self):
return self.get_basic_type("long", 64, dc.DW_ATE_signed)
def create_subroutine_type(self, return_type, param_types):
"""
Create a DISubroutineType given return type and list of parameter types.
Equivalent to: !DISubroutineType(types: !{ret, args...})
"""
type_array = [return_type]
if isinstance(param_types, (list, tuple)):
type_array.extend(param_types)
else:
type_array.append(param_types)
return self.module.add_debug_info("DISubroutineType", {"types": type_array})
def create_local_variable_debug_info(
self, name: str, arg: int, var_type: Any
) -> Any:
"""
Create debug info for a local variable (DILocalVariable) without scope.
Example:
!DILocalVariable(name: "ctx", arg: 1, file: !3, line: 20, type: !7)
"""
return self.module.add_debug_info(
"DILocalVariable",
{
"name": name,
"arg": arg,
"file": self.module._file_metadata,
"type": var_type,
},
)
def add_scope_to_local_variable(self, local_variable_debug_info, scope_value):
"""
Add scope information to an existing local variable debug info object.
"""
# TODO: this is a workaround a flaw in the debug info generation. Fix this if possible in the future.
# We should not be touching llvmlite's internals like this.
if hasattr(local_variable_debug_info, "operands"):
# LLVM metadata operands is a tuple, so we need to rebuild it
existing_operands = local_variable_debug_info.operands
# Convert tuple to list, add scope, convert back to tuple
operands_list = list(existing_operands)
operands_list.append(("scope", scope_value))
# Reassign the new tuple
local_variable_debug_info.operands = tuple(operands_list)
def create_subprogram(
self, name: str, subroutine_type: Any, retained_nodes: List[Any]
) -> Any:
"""
Create a DISubprogram for a function.
Args:
name: Function name
subroutine_type: DISubroutineType for the function signature
retained_nodes: List of DILocalVariable nodes for function parameters/variables
Returns:
DISubprogram metadata
"""
return self.module.add_debug_info(
"DISubprogram",
{
"name": name,
"scope": self.module._file_metadata,
"file": self.module._file_metadata,
"type": subroutine_type,
# TODO: the following flags do not exist at the moment in our dwarf constants file. We need to add them.
# "flags": dc.DW_FLAG_Prototyped | dc.DW_FLAG_AllCallsDescribed,
# "spFlags": dc.DW_SPFLAG_Definition | dc.DW_SPFLAG_Optimized,
"unit": self.module._debug_compile_unit,
"retainedNodes": retained_nodes,
},
is_distinct=True,
)

View File

@ -1,17 +0,0 @@
from .expr_pass import eval_expr, handle_expr, get_operand_value
from .type_normalization import convert_to_bool, get_base_type_and_depth
from .ir_ops import deref_to_depth, access_struct_field
from .call_registry import CallHandlerRegistry
from .vmlinux_registry import VmlinuxHandlerRegistry
__all__ = [
"eval_expr",
"handle_expr",
"convert_to_bool",
"get_base_type_and_depth",
"deref_to_depth",
"access_struct_field",
"get_operand_value",
"CallHandlerRegistry",
"VmlinuxHandlerRegistry",
]

View File

@ -1,20 +0,0 @@
class CallHandlerRegistry:
"""Registry for handling different types of calls (helpers, etc.)"""
_handler = None
@classmethod
def set_handler(cls, handler):
"""Set the handler for unknown calls"""
cls._handler = handler
@classmethod
def handle_call(
cls, call, module, builder, func, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Handle a call using the registered handler"""
if cls._handler is None:
return None
return cls._handler(
call, module, builder, func, local_sym_tab, map_sym_tab, structs_sym_tab
)

View File

@ -1,797 +0,0 @@
import ast
from llvmlite import ir
from logging import Logger
import logging
from typing import Dict
from pythonbpf.type_deducer import ctypes_to_ir, is_ctypes
from .call_registry import CallHandlerRegistry
from .ir_ops import deref_to_depth, access_struct_field
from .type_normalization import (
convert_to_bool,
handle_comparator,
get_base_type_and_depth,
)
from .vmlinux_registry import VmlinuxHandlerRegistry
from ..vmlinux_parser.dependency_node import Field
logger: Logger = logging.getLogger(__name__)
# ============================================================================
# Leaf Handlers (No Recursive eval_expr calls)
# ============================================================================
def _handle_name_expr(expr: ast.Name, local_sym_tab: Dict, builder: ir.IRBuilder):
"""Handle ast.Name expressions."""
if expr.id in local_sym_tab:
var = local_sym_tab[expr.id].var
val = builder.load(var)
return val, local_sym_tab[expr.id].ir_type
else:
# Check if it's a vmlinux enum/constant
vmlinux_result = VmlinuxHandlerRegistry.handle_name(expr.id)
if vmlinux_result is not None:
return vmlinux_result
raise SyntaxError(f"Undefined variable {expr.id}")
def _handle_constant_expr(module, builder, expr: ast.Constant):
"""Handle ast.Constant expressions."""
if isinstance(expr.value, int) or isinstance(expr.value, bool):
return ir.Constant(ir.IntType(64), int(expr.value)), ir.IntType(64)
elif isinstance(expr.value, str):
str_name = f".str.{id(expr)}"
str_bytes = expr.value.encode("utf-8") + b"\x00"
str_type = ir.ArrayType(ir.IntType(8), len(str_bytes))
str_constant = ir.Constant(str_type, bytearray(str_bytes))
# Create global variable
global_str = ir.GlobalVariable(module, str_type, name=str_name)
global_str.linkage = "internal"
global_str.global_constant = True
global_str.initializer = str_constant
str_ptr = builder.bitcast(global_str, ir.PointerType(ir.IntType(8)))
return str_ptr, ir.PointerType(ir.IntType(8))
else:
logger.error(f"Unsupported constant type {ast.dump(expr)}")
return None
def _handle_attribute_expr(
func,
expr: ast.Attribute,
local_sym_tab: Dict,
structs_sym_tab: Dict,
builder: ir.IRBuilder,
):
"""Handle ast.Attribute expressions for struct field access."""
if isinstance(expr.value, ast.Name):
var_name = expr.value.id
attr_name = expr.attr
if var_name in local_sym_tab:
var_ptr, var_type, var_metadata = local_sym_tab[var_name]
logger.info(f"Loading attribute {attr_name} from variable {var_name}")
logger.info(
f"Variable type: {var_type}, Variable ptr: {var_ptr}, Variable Metadata: {var_metadata}"
)
if (
hasattr(var_metadata, "__module__")
and var_metadata.__module__ == "vmlinux"
):
# Try vmlinux handler when var_metadata is not a string, but has a module attribute.
# This has been done to keep everything separate in vmlinux struct handling.
vmlinux_result = VmlinuxHandlerRegistry.handle_attribute(
expr, local_sym_tab, None, builder
)
if vmlinux_result is not None:
return vmlinux_result
else:
raise RuntimeError("Vmlinux struct did not process successfully")
elif isinstance(var_metadata, Field):
logger.error(
f"Cannot access field '{attr_name}' on already-loaded field value '{var_name}'"
)
return None
if var_metadata in structs_sym_tab:
return access_struct_field(
builder,
var_ptr,
var_type,
var_metadata,
expr.attr,
structs_sym_tab,
func,
)
else:
logger.error(f"Struct metadata for '{var_name}' not found")
else:
logger.error(f"Undefined variable '{var_name}' for attribute access")
else:
logger.error("Unsupported attribute base expression type")
return None
def _handle_deref_call(expr: ast.Call, local_sym_tab: Dict, builder: ir.IRBuilder):
"""Handle deref function calls."""
logger.info(f"Handling deref {ast.dump(expr)}")
if len(expr.args) != 1:
logger.info("deref takes exactly one argument")
return None
arg = expr.args[0]
if (
isinstance(arg, ast.Call)
and isinstance(arg.func, ast.Name)
and arg.func.id == "deref"
):
logger.info("Multiple deref not supported")
return None
if isinstance(arg, ast.Name):
if arg.id in local_sym_tab:
arg_ptr = local_sym_tab[arg.id].var
else:
logger.info(f"Undefined variable {arg.id}")
return None
else:
logger.info("Unsupported argument type for deref")
return None
if arg_ptr is None:
logger.info("Failed to evaluate deref argument")
return None
# Load the value from pointer
val = builder.load(arg_ptr)
return val, local_sym_tab[arg.id].ir_type
# ============================================================================
# Binary Operations
# ============================================================================
def get_operand_value(
func, module, operand, builder, local_sym_tab, map_sym_tab, structs_sym_tab=None
):
"""Extract the value from an operand, handling variables and constants."""
logger.info(f"Getting operand value for: {ast.dump(operand)}")
if isinstance(operand, ast.Name):
if operand.id in local_sym_tab:
var = local_sym_tab[operand.id].var
var_type = var.type
base_type, depth = get_base_type_and_depth(var_type)
logger.info(f"var is {var}, base_type is {base_type}, depth is {depth}")
if depth == 1:
val = builder.load(var)
return val
else:
val = deref_to_depth(func, builder, var, depth)
return val
else:
# Check if it's a vmlinux enum/constant
vmlinux_result = VmlinuxHandlerRegistry.handle_name(operand.id)
if vmlinux_result is not None:
val, _ = vmlinux_result
return val
elif isinstance(operand, ast.Constant):
if isinstance(operand.value, int):
cst = ir.Constant(ir.IntType(64), int(operand.value))
return cst
raise TypeError(f"Unsupported constant type: {type(operand.value)}")
elif isinstance(operand, ast.BinOp):
res = _handle_binary_op_impl(
func, module, operand, builder, local_sym_tab, map_sym_tab, structs_sym_tab
)
return res
else:
res = eval_expr(
func, module, builder, operand, local_sym_tab, map_sym_tab, structs_sym_tab
)
if res is None:
raise ValueError(f"Failed to evaluate call expression: {operand}")
val, _ = res
logger.info(f"Evaluated expr to {val} of type {val.type}")
base_type, depth = get_base_type_and_depth(val.type)
if depth > 0:
val = deref_to_depth(func, builder, val, depth)
return val
raise TypeError(f"Unsupported operand type: {type(operand)}")
def _handle_binary_op_impl(
func, module, rval, builder, local_sym_tab, map_sym_tab, structs_sym_tab=None
):
op = rval.op
left = get_operand_value(
func, module, rval.left, builder, local_sym_tab, map_sym_tab, structs_sym_tab
)
right = get_operand_value(
func, module, rval.right, builder, local_sym_tab, map_sym_tab, structs_sym_tab
)
logger.info(f"left is {left}, right is {right}, op is {op}")
# NOTE: Before doing the operation, if the operands are integers
# we always extend them to i64. The assignment to LHS will take
# care of truncation if needed.
if isinstance(left.type, ir.IntType) and left.type.width < 64:
left = builder.sext(left, ir.IntType(64))
if isinstance(right.type, ir.IntType) and right.type.width < 64:
right = builder.sext(right, ir.IntType(64))
# Map AST operation nodes to LLVM IR builder methods
op_map = {
ast.Add: builder.add,
ast.Sub: builder.sub,
ast.Mult: builder.mul,
ast.Div: builder.sdiv,
ast.Mod: builder.srem,
ast.LShift: builder.shl,
ast.RShift: builder.lshr,
ast.BitOr: builder.or_,
ast.BitXor: builder.xor,
ast.BitAnd: builder.and_,
ast.FloorDiv: builder.udiv,
}
if type(op) in op_map:
result = op_map[type(op)](left, right)
return result
else:
raise SyntaxError("Unsupported binary operation")
def _handle_binary_op(
func,
module,
rval,
builder,
var_name,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
result = _handle_binary_op_impl(
func, module, rval, builder, local_sym_tab, map_sym_tab, structs_sym_tab
)
if var_name and var_name in local_sym_tab:
logger.info(
f"Storing result {result} into variable {local_sym_tab[var_name].var}"
)
builder.store(result, local_sym_tab[var_name].var)
return result, result.type
# ============================================================================
# Comparison and Unary Operations
# ============================================================================
def _handle_ctypes_call(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
"""Handle ctypes type constructor calls."""
if len(expr.args) != 1:
logger.info("ctypes constructor takes exactly one argument")
return None
arg = expr.args[0]
val = eval_expr(
func,
module,
builder,
arg,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if val is None:
logger.info("Failed to evaluate argument to ctypes constructor")
return None
call_type = expr.func.id
expected_type = ctypes_to_ir(call_type)
# Extract the actual IR value and type
# val could be (value, ir_type) or (value, Field)
value, val_type = val
# If val_type is a Field object (from vmlinux struct), get the actual IR type of the value
if isinstance(val_type, Field):
# The value is already the correct IR value (potentially zero-extended)
# Get the IR type from the value itself
actual_ir_type = value.type
logger.info(
f"Converting vmlinux field {val_type.name} (IR type: {actual_ir_type}) to {call_type}"
)
else:
actual_ir_type = val_type
if actual_ir_type != expected_type:
# NOTE: We are only considering casting to and from int types for now
if isinstance(actual_ir_type, ir.IntType) and isinstance(
expected_type, ir.IntType
):
if actual_ir_type.width < expected_type.width:
value = builder.sext(value, expected_type)
logger.info(
f"Sign-extended from i{actual_ir_type.width} to i{expected_type.width}"
)
elif actual_ir_type.width > expected_type.width:
value = builder.trunc(value, expected_type)
logger.info(
f"Truncated from i{actual_ir_type.width} to i{expected_type.width}"
)
else:
# Same width, just use as-is (e.g., both i64)
pass
else:
raise ValueError(
f"Type mismatch: expected {expected_type}, got {actual_ir_type} (original type: {val_type})"
)
return value, expected_type
def _handle_compare(
func, module, builder, cond, local_sym_tab, map_sym_tab, structs_sym_tab=None
):
"""Handle ast.Compare expressions."""
if len(cond.ops) != 1 or len(cond.comparators) != 1:
logger.error("Only single comparisons are supported")
return None
lhs = eval_expr(
func,
module,
builder,
cond.left,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
rhs = eval_expr(
func,
module,
builder,
cond.comparators[0],
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if lhs is None or rhs is None:
logger.error("Failed to evaluate comparison operands")
return None
lhs, _ = lhs
rhs, _ = rhs
return handle_comparator(func, builder, cond.ops[0], lhs, rhs)
def _handle_unary_op(
func,
module,
builder,
expr: ast.UnaryOp,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
"""Handle ast.UnaryOp expressions."""
if not isinstance(expr.op, ast.Not) and not isinstance(expr.op, ast.USub):
logger.error("Only 'not' and '-' unary operators are supported")
return None
operand = get_operand_value(
func, module, expr.operand, builder, local_sym_tab, map_sym_tab, structs_sym_tab
)
if operand is None:
logger.error("Failed to evaluate operand for unary operation")
return None
if isinstance(expr.op, ast.Not):
true_const = ir.Constant(ir.IntType(1), 1)
result = builder.xor(convert_to_bool(builder, operand), true_const)
return result, ir.IntType(1)
elif isinstance(expr.op, ast.USub):
# Multiply by -1
neg_one = ir.Constant(ir.IntType(64), -1)
result = builder.mul(operand, neg_one)
return result, ir.IntType(64)
return None
# ============================================================================
# Boolean Operations
# ============================================================================
def _handle_and_op(func, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab):
"""Handle `and` boolean operations."""
logger.debug(f"Handling 'and' operator with {len(expr.values)} operands")
merge_block = func.append_basic_block(name="and.merge")
false_block = func.append_basic_block(name="and.false")
incoming_values = []
for i, value in enumerate(expr.values):
is_last = i == len(expr.values) - 1
# Evaluate current operand
operand_result = eval_expr(
func, None, builder, value, local_sym_tab, map_sym_tab, structs_sym_tab
)
if operand_result is None:
logger.error(f"Failed to evaluate operand {i} in 'and' expression")
return None
operand_val, operand_type = operand_result
# Convert to boolean if needed
operand_bool = convert_to_bool(builder, operand_val)
current_block = builder.block
if is_last:
# Last operand: result is this value
builder.branch(merge_block)
incoming_values.append((operand_bool, current_block))
else:
# Not last: check if true, continue or short-circuit
next_check = func.append_basic_block(name=f"and.check_{i + 1}")
builder.cbranch(operand_bool, next_check, false_block)
builder.position_at_end(next_check)
# False block: short-circuit with false
builder.position_at_end(false_block)
builder.branch(merge_block)
false_value = ir.Constant(ir.IntType(1), 0)
incoming_values.append((false_value, false_block))
# Merge block: phi node
builder.position_at_end(merge_block)
phi = builder.phi(ir.IntType(1), name="and.result")
for val, block in incoming_values:
phi.add_incoming(val, block)
logger.debug(f"Generated 'and' with {len(incoming_values)} incoming values")
return phi, ir.IntType(1)
def _handle_or_op(func, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab):
"""Handle `or` boolean operations."""
logger.debug(f"Handling 'or' operator with {len(expr.values)} operands")
merge_block = func.append_basic_block(name="or.merge")
true_block = func.append_basic_block(name="or.true")
incoming_values = []
for i, value in enumerate(expr.values):
is_last = i == len(expr.values) - 1
# Evaluate current operand
operand_result = eval_expr(
func, None, builder, value, local_sym_tab, map_sym_tab, structs_sym_tab
)
if operand_result is None:
logger.error(f"Failed to evaluate operand {i} in 'or' expression")
return None
operand_val, operand_type = operand_result
# Convert to boolean if needed
operand_bool = convert_to_bool(builder, operand_val)
current_block = builder.block
if is_last:
# Last operand: result is this value
builder.branch(merge_block)
incoming_values.append((operand_bool, current_block))
else:
# Not last: check if false, continue or short-circuit
next_check = func.append_basic_block(name=f"or.check_{i + 1}")
builder.cbranch(operand_bool, true_block, next_check)
builder.position_at_end(next_check)
# True block: short-circuit with true
builder.position_at_end(true_block)
builder.branch(merge_block)
true_value = ir.Constant(ir.IntType(1), 1)
incoming_values.append((true_value, true_block))
# Merge block: phi node
builder.position_at_end(merge_block)
phi = builder.phi(ir.IntType(1), name="or.result")
for val, block in incoming_values:
phi.add_incoming(val, block)
logger.debug(f"Generated 'or' with {len(incoming_values)} incoming values")
return phi, ir.IntType(1)
def _handle_boolean_op(
func,
module,
builder,
expr: ast.BoolOp,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
"""Handle `and` and `or` boolean operations."""
if isinstance(expr.op, ast.And):
return _handle_and_op(
func, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab
)
elif isinstance(expr.op, ast.Or):
return _handle_or_op(
func, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab
)
else:
logger.error(f"Unsupported boolean operator: {type(expr.op).__name__}")
return None
# ============================================================================
# Struct casting (including vmlinux struct casting)
# ============================================================================
def _handle_vmlinux_cast(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
# handle expressions such as struct_request(ctx.di) where struct_request is a vmlinux
# struct and ctx.di is a pointer to a struct but is actually represented as a c_uint64
# which needs to be cast to a pointer. This is also a field of another vmlinux struct
"""Handle vmlinux struct cast expressions like struct_request(ctx.di)."""
if len(expr.args) != 1:
logger.info("vmlinux struct cast takes exactly one argument")
return None
# Get the struct name
struct_name = expr.func.id
# Evaluate the argument (e.g., ctx.di which is a c_uint64)
arg_result = eval_expr(
func,
module,
builder,
expr.args[0],
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if arg_result is None:
logger.info("Failed to evaluate argument to vmlinux struct cast")
return None
arg_val, arg_type = arg_result
# Get the vmlinux struct type
vmlinux_struct_type = VmlinuxHandlerRegistry.get_struct_type(struct_name)
if vmlinux_struct_type is None:
logger.error(f"Failed to get vmlinux struct type for {struct_name}")
return None
# Cast the integer/value to a pointer to the struct
# If arg_val is an integer type, we need to inttoptr it
ptr_type = ir.PointerType()
# TODO: add a field value type check here
# print(arg_type)
if isinstance(arg_type, Field):
if ctypes_to_ir(arg_type.type.__name__):
# Cast integer to pointer
casted_ptr = builder.inttoptr(arg_val, ptr_type)
else:
logger.error(f"Unsupported type for vmlinux cast: {arg_type}")
return None
else:
casted_ptr = builder.inttoptr(arg_val, ptr_type)
return casted_ptr, vmlinux_struct_type
def _handle_user_defined_struct_cast(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
):
"""Handle user-defined struct cast expressions like iphdr(nh).
This casts a pointer/integer value to a pointer to the user-defined struct,
similar to how vmlinux struct casts work but for user-defined @struct types.
"""
if len(expr.args) != 1:
logger.info("User-defined struct cast takes exactly one argument")
return None
# Get the struct name
struct_name = expr.func.id
if struct_name not in structs_sym_tab:
logger.error(f"Struct {struct_name} not found in structs_sym_tab")
return None
struct_info = structs_sym_tab[struct_name]
# Evaluate the argument (e.g.,
# an address/pointer value)
arg_result = eval_expr(
func,
module,
builder,
expr.args[0],
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if arg_result is None:
logger.info("Failed to evaluate argument to user-defined struct cast")
return None
arg_val, arg_type = arg_result
# Cast the integer/pointer value to a pointer to the struct type
# The struct pointer type is a pointer to the struct's IR type
struct_ptr_type = ir.PointerType(struct_info.ir_type)
# If arg_val is an integer type (like i64), convert to pointer using inttoptr
if isinstance(arg_val.type, ir.IntType):
casted_ptr = builder.inttoptr(arg_val, struct_ptr_type)
logger.info(f"Cast integer to pointer for struct {struct_name}")
elif isinstance(arg_val.type, ir.PointerType):
# If already a pointer, bitcast to the struct pointer type
casted_ptr = builder.bitcast(arg_val, struct_ptr_type)
logger.info(f"Bitcast pointer to struct pointer for {struct_name}")
else:
logger.error(f"Unsupported type for user-defined struct cast: {arg_val.type}")
return None
return casted_ptr, struct_name
# ============================================================================
# Expression Dispatcher
# ============================================================================
def eval_expr(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
):
logger.info(f"Evaluating expression: {ast.dump(expr)}")
if isinstance(expr, ast.Name):
return _handle_name_expr(expr, local_sym_tab, builder)
elif isinstance(expr, ast.Constant):
return _handle_constant_expr(module, builder, expr)
elif isinstance(expr, ast.Call):
if isinstance(expr.func, ast.Name) and VmlinuxHandlerRegistry.is_vmlinux_struct(
expr.func.id
):
return _handle_vmlinux_cast(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if isinstance(expr.func, ast.Name) and expr.func.id == "deref":
return _handle_deref_call(expr, local_sym_tab, builder)
if isinstance(expr.func, ast.Name) and is_ctypes(expr.func.id):
return _handle_ctypes_call(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if isinstance(expr.func, ast.Name) and (expr.func.id in structs_sym_tab):
return _handle_user_defined_struct_cast(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
result = CallHandlerRegistry.handle_call(
expr, module, builder, func, local_sym_tab, map_sym_tab, structs_sym_tab
)
if result is not None:
return result
logger.warning(f"Unknown call: {ast.dump(expr)}")
return None
elif isinstance(expr, ast.Attribute):
return _handle_attribute_expr(
func, expr, local_sym_tab, structs_sym_tab, builder
)
elif isinstance(expr, ast.BinOp):
return _handle_binary_op(
func,
module,
expr,
builder,
None,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
elif isinstance(expr, ast.Compare):
return _handle_compare(
func, module, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab
)
elif isinstance(expr, ast.UnaryOp):
return _handle_unary_op(
func, module, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab
)
elif isinstance(expr, ast.BoolOp):
return _handle_boolean_op(
func, module, builder, expr, local_sym_tab, map_sym_tab, structs_sym_tab
)
logger.info("Unsupported expression evaluation")
return None
def handle_expr(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
):
"""Handle expression statements in the function body."""
logger.info(f"Handling expression: {ast.dump(expr)}")
call = expr.value
if isinstance(call, ast.Call):
eval_expr(
func,
module,
builder,
call,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
else:
logger.info("Unsupported expression type")

View File

@ -1,116 +0,0 @@
import logging
from llvmlite import ir
logger = logging.getLogger(__name__)
def deref_to_depth(func, builder, val, target_depth):
"""Dereference a pointer to a certain depth."""
cur_val = val
cur_type = val.type
for depth in range(target_depth):
if not isinstance(val.type, ir.PointerType):
logger.error("Cannot dereference further, non-pointer type")
return None
# dereference with null check
pointee_type = cur_type.pointee
def load_op(builder, ptr):
return builder.load(ptr)
cur_val = _null_checked_operation(
func, builder, cur_val, load_op, pointee_type, f"deref_{depth}"
)
cur_type = pointee_type
logger.debug(f"Dereferenced to depth {depth}, type: {pointee_type}")
return cur_val
def _null_checked_operation(func, builder, ptr, operation, result_type, name_prefix):
"""
Generic null-checked operation on a pointer.
"""
curr_block = builder.block
not_null_block = func.append_basic_block(name=f"{name_prefix}_not_null")
merge_block = func.append_basic_block(name=f"{name_prefix}_merge")
null_ptr = ir.Constant(ptr.type, None)
is_not_null = builder.icmp_signed("!=", ptr, null_ptr)
builder.cbranch(is_not_null, not_null_block, merge_block)
builder.position_at_end(not_null_block)
result = operation(builder, ptr)
not_null_after = builder.block
builder.branch(merge_block)
builder.position_at_end(merge_block)
phi = builder.phi(result_type, name=f"{name_prefix}_result")
if isinstance(result_type, ir.IntType):
null_val = ir.Constant(result_type, 0)
elif isinstance(result_type, ir.PointerType):
null_val = ir.Constant(result_type, None)
else:
null_val = ir.Constant(result_type, ir.Undefined)
phi.add_incoming(null_val, curr_block)
phi.add_incoming(result, not_null_after)
return phi
def access_struct_field(
builder, var_ptr, var_type, var_metadata, field_name, structs_sym_tab, func=None
):
"""
Access a struct field - automatically returns value or pointer based on field type.
"""
metadata = (
structs_sym_tab.get(var_metadata)
if isinstance(var_metadata, str)
else var_metadata
)
if not metadata or field_name not in metadata.fields:
raise ValueError(f"Field '{field_name}' not found in struct")
field_type = metadata.field_type(field_name)
is_ptr_to_struct = isinstance(var_type, ir.PointerType) and isinstance(
var_metadata, str
)
# Get struct pointer
struct_ptr = builder.load(var_ptr) if is_ptr_to_struct else var_ptr
should_load = not isinstance(field_type, ir.ArrayType)
def field_access_op(builder, ptr):
typed_ptr = builder.bitcast(ptr, metadata.ir_type.as_pointer())
field_ptr = metadata.gep(builder, typed_ptr, field_name)
return builder.load(field_ptr) if should_load else field_ptr
# Handle null check for pointer-to-struct
if is_ptr_to_struct:
if func is None:
raise ValueError("func required for null-safe struct pointer access")
if should_load:
result_type = field_type
else:
result_type = field_type.as_pointer()
result = _null_checked_operation(
func,
builder,
struct_ptr,
field_access_op,
result_type,
f"field_{field_name}",
)
return result, field_type
field_ptr = metadata.gep(builder, struct_ptr, field_name)
result = builder.load(field_ptr) if should_load else field_ptr
return result, field_type

View File

@ -1,83 +0,0 @@
import logging
import ast
from llvmlite import ir
from .ir_ops import deref_to_depth
logger = logging.getLogger(__name__)
COMPARISON_OPS = {
ast.Eq: "==",
ast.NotEq: "!=",
ast.Lt: "<",
ast.LtE: "<=",
ast.Gt: ">",
ast.GtE: ">=",
ast.Is: "==",
ast.IsNot: "!=",
}
def get_base_type_and_depth(ir_type):
"""Get the base type for pointer types."""
cur_type = ir_type
depth = 0
while isinstance(cur_type, ir.PointerType):
depth += 1
cur_type = cur_type.pointee
return cur_type, depth
def _normalize_types(func, builder, lhs, rhs):
"""Normalize types for comparison."""
logger.info(f"Normalizing types: {lhs.type} vs {rhs.type}")
if isinstance(lhs.type, ir.IntType) and isinstance(rhs.type, ir.IntType):
if lhs.type.width < rhs.type.width:
lhs = builder.sext(lhs, rhs.type)
else:
rhs = builder.sext(rhs, lhs.type)
return lhs, rhs
elif not isinstance(lhs.type, ir.PointerType) and not isinstance(
rhs.type, ir.PointerType
):
logger.error(f"Type mismatch: {lhs.type} vs {rhs.type}")
return None, None
else:
lhs_base, lhs_depth = get_base_type_and_depth(lhs.type)
rhs_base, rhs_depth = get_base_type_and_depth(rhs.type)
if lhs_base == rhs_base:
if lhs_depth < rhs_depth:
rhs = deref_to_depth(func, builder, rhs, rhs_depth - lhs_depth)
elif rhs_depth < lhs_depth:
lhs = deref_to_depth(func, builder, lhs, lhs_depth - rhs_depth)
return _normalize_types(func, builder, lhs, rhs)
def convert_to_bool(builder, val):
"""Convert a value to boolean."""
if val.type == ir.IntType(1):
return val
if isinstance(val.type, ir.PointerType):
zero = ir.Constant(val.type, None)
else:
zero = ir.Constant(val.type, 0)
return builder.icmp_signed("!=", val, zero)
def handle_comparator(func, builder, op, lhs, rhs):
"""Handle comparison operations."""
if lhs.type != rhs.type:
lhs, rhs = _normalize_types(func, builder, lhs, rhs)
if lhs is None or rhs is None:
return None
if type(op) not in COMPARISON_OPS:
logger.error(f"Unsupported comparison operator: {type(op)}")
return None
predicate = COMPARISON_OPS[type(op)]
result = builder.icmp_signed(predicate, lhs, rhs)
logger.debug(f"Comparison result: {result}")
return result, ir.IntType(1)

View File

@ -1,75 +0,0 @@
import ast
from pythonbpf.vmlinux_parser.vmlinux_exports_handler import VmlinuxHandler
class VmlinuxHandlerRegistry:
"""Registry for vmlinux handler operations"""
_handler = None
@classmethod
def set_handler(cls, handler: VmlinuxHandler):
"""Set the vmlinux handler"""
cls._handler = handler
@classmethod
def get_handler(cls):
"""Get the vmlinux handler"""
return cls._handler
@classmethod
def handle_name(cls, name):
"""Try to handle a name as vmlinux enum/constant"""
if cls._handler is None:
return None
return cls._handler.handle_vmlinux_enum(name)
@classmethod
def handle_attribute(cls, expr, local_sym_tab, module, builder):
"""Try to handle an attribute access as vmlinux struct field"""
if cls._handler is None:
return None
if isinstance(expr.value, ast.Name):
var_name = expr.value.id
field_name = expr.attr
return cls._handler.handle_vmlinux_struct_field(
var_name, field_name, module, builder, local_sym_tab
)
return None
@classmethod
def get_struct_debug_info(cls, name):
if cls._handler is None:
return False
return cls._handler.get_struct_debug_info(name)
@classmethod
def is_vmlinux_struct(cls, name):
"""Check if a name refers to a vmlinux struct"""
if cls._handler is None:
return False
return cls._handler.is_vmlinux_struct(name)
@classmethod
def get_struct_type(cls, name):
"""Try to handle a struct name as vmlinux struct"""
if cls._handler is None:
return None
return cls._handler.get_vmlinux_struct_type(name)
@classmethod
def has_field(cls, vmlinux_struct_name, field_name):
"""Check if a vmlinux struct has a specific field"""
if cls._handler is None:
return False
return cls._handler.has_field(vmlinux_struct_name, field_name)
@classmethod
def get_field_type(cls, vmlinux_struct_name, field_name):
"""Get the type of a field in a vmlinux struct"""
if cls._handler is None:
return None
assert isinstance(cls._handler, VmlinuxHandler)
return cls._handler.get_field_type(vmlinux_struct_name, field_name)

155
pythonbpf/expr_pass.py Normal file
View File

@ -0,0 +1,155 @@
import ast
from llvmlite import ir
def eval_expr(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab=None,
local_var_metadata=None,
):
print(f"Evaluating expression: {ast.dump(expr)}")
print(local_var_metadata)
if isinstance(expr, ast.Name):
if expr.id in local_sym_tab:
var = local_sym_tab[expr.id][0]
val = builder.load(var)
return val, local_sym_tab[expr.id][1] # return value and type
else:
print(f"Undefined variable {expr.id}")
return None
elif isinstance(expr, ast.Constant):
if isinstance(expr.value, int):
return ir.Constant(ir.IntType(64), expr.value), ir.IntType(64)
elif isinstance(expr.value, bool):
return ir.Constant(ir.IntType(1), int(expr.value)), ir.IntType(1)
else:
print("Unsupported constant type")
return None
elif isinstance(expr, ast.Call):
# delayed import to avoid circular dependency
from pythonbpf.helper import HelperHandlerRegistry, handle_helper_call
if isinstance(expr.func, ast.Name):
# check deref
if expr.func.id == "deref":
print(f"Handling deref {ast.dump(expr)}")
if len(expr.args) != 1:
print("deref takes exactly one argument")
return None
arg = expr.args[0]
if (
isinstance(arg, ast.Call)
and isinstance(arg.func, ast.Name)
and arg.func.id == "deref"
):
print("Multiple deref not supported")
return None
if isinstance(arg, ast.Name):
if arg.id in local_sym_tab:
arg = local_sym_tab[arg.id][0]
else:
print(f"Undefined variable {arg.id}")
return None
if arg is None:
print("Failed to evaluate deref argument")
return None
# Since we are handling only name case, directly take type from sym tab
val = builder.load(arg)
return val, local_sym_tab[expr.args[0].id][1]
# check for helpers
if HelperHandlerRegistry.has_handler(expr.func.id):
return handle_helper_call(
expr,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
local_var_metadata,
)
elif isinstance(expr.func, ast.Attribute):
print(f"Handling method call: {ast.dump(expr.func)}")
if isinstance(expr.func.value, ast.Call) and isinstance(
expr.func.value.func, ast.Name
):
method_name = expr.func.attr
if HelperHandlerRegistry.has_handler(method_name):
return handle_helper_call(
expr,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
local_var_metadata,
)
elif isinstance(expr.func.value, ast.Name):
obj_name = expr.func.value.id
method_name = expr.func.attr
if obj_name in map_sym_tab:
if HelperHandlerRegistry.has_handler(method_name):
return handle_helper_call(
expr,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
local_var_metadata,
)
elif isinstance(expr, ast.Attribute):
if isinstance(expr.value, ast.Name):
var_name = expr.value.id
attr_name = expr.attr
if var_name in local_sym_tab:
var_ptr, var_type = local_sym_tab[var_name]
print(f"Loading attribute " f"{attr_name} from variable {var_name}")
print(f"Variable type: {var_type}, Variable ptr: {var_ptr}")
print(local_var_metadata)
if local_var_metadata and var_name in local_var_metadata:
metadata = structs_sym_tab[local_var_metadata[var_name]]
if attr_name in metadata.fields:
gep = metadata.gep(builder, var_ptr, attr_name)
val = builder.load(gep)
field_type = metadata.field_type(attr_name)
return val, field_type
print("Unsupported expression evaluation")
return None
def handle_expr(
func,
module,
builder,
expr,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
local_var_metadata,
):
"""Handle expression statements in the function body."""
print(f"Handling expression: {ast.dump(expr)}")
print(local_var_metadata)
call = expr.value
if isinstance(call, ast.Call):
eval_expr(
func,
module,
builder,
call,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
local_var_metadata,
)
else:
print("Unsupported expression type")

View File

@ -1,3 +0,0 @@
from .functions_pass import func_proc
__all__ = ["func_proc"]

View File

@ -1,82 +0,0 @@
import ast
import llvmlite.ir as ir
import logging
from pythonbpf.debuginfo import DebugInfoGenerator
from pythonbpf.expr import VmlinuxHandlerRegistry
import ctypes
logger = logging.getLogger(__name__)
def generate_function_debug_info(
func_node: ast.FunctionDef, module: ir.Module, func: ir.Function
):
generator = DebugInfoGenerator(module)
leading_argument = func_node.args.args[0]
leading_argument_name = leading_argument.arg
annotation = leading_argument.annotation
if func_node.returns is None:
# TODO: should check if this logic is consistent with function return type handling elsewhere
return_type = ctypes.c_int64()
elif hasattr(func_node.returns, "id"):
return_type = func_node.returns.id
if return_type == "c_int32":
return_type = generator.get_int32_type()
elif return_type == "c_int64":
return_type = generator.get_int64_type()
elif return_type == "c_uint32":
return_type = generator.get_uint32_type()
elif return_type == "c_uint64":
return_type = generator.get_uint64_type()
else:
logger.warning(
"Return type should be int32, int64, uint32 or uint64 only. Falling back to int64"
)
return_type = generator.get_int64_type()
else:
return_type = ctypes.c_int64()
# context processing
if annotation is None:
logger.warning("Type of context of function not found.")
return
if hasattr(annotation, "id"):
ctype_name = annotation.id
if ctype_name == "c_void_p":
return
elif ctype_name.startswith("ctypes"):
raise SyntaxError(
"The first argument should always be a pointer to a struct or a void pointer"
)
context_debug_info = VmlinuxHandlerRegistry.get_struct_debug_info(annotation.id)
# Create pointer to context this must be created fresh for each function
# to avoid circular reference issues when the same struct is used in multiple functions
pointer_to_context_debug_info = generator.create_pointer_type(
context_debug_info, 64
)
# Create subroutine type - also fresh for each function
subroutine_type = generator.create_subroutine_type(
return_type, pointer_to_context_debug_info
)
# Create local variable - fresh for each function with unique name
context_local_variable = generator.create_local_variable_debug_info(
leading_argument_name, 1, pointer_to_context_debug_info
)
retained_nodes = [context_local_variable]
logger.info(f"Generating debug info for function {func_node.name}")
# Create subprogram with is_distinct=True to ensure each function gets unique debug info
subprogram_debug_info = generator.create_subprogram(
func_node.name, subroutine_type, retained_nodes
)
generator.add_scope_to_local_variable(
context_local_variable, subprogram_debug_info
)
func.set_metadata("dbg", subprogram_debug_info)
else:
logger.error(f"Invalid annotation type for argument '{leading_argument_name}'")

View File

@ -1,88 +0,0 @@
import ast
def get_probe_string(func_node):
"""Extract the probe string from the decorator of the function node"""
# TODO: right now we have the whole string in the section decorator
# But later we can implement typed tuples for tracepoints and kprobes
# For helper functions, we return "helper"
for decorator in func_node.decorator_list:
if isinstance(decorator, ast.Name) and decorator.id == "bpfglobal":
return None
if isinstance(decorator, ast.Call) and isinstance(decorator.func, ast.Name):
if decorator.func.id == "section" and len(decorator.args) == 1:
arg = decorator.args[0]
if isinstance(arg, ast.Constant) and isinstance(arg.value, str):
return arg.value
return "helper"
def is_global_function(func_node):
"""Check if the function is a global"""
for decorator in func_node.decorator_list:
if isinstance(decorator, ast.Name) and decorator.id in (
"map",
"bpfglobal",
"struct",
):
return True
return False
def infer_return_type(func_node: ast.FunctionDef):
if not isinstance(func_node, (ast.FunctionDef, ast.AsyncFunctionDef)):
raise TypeError("Expected ast.FunctionDef")
if func_node.returns is not None:
try:
return ast.unparse(func_node.returns)
except Exception:
node = func_node.returns
if isinstance(node, ast.Name):
return node.id
if isinstance(node, ast.Attribute):
return getattr(node, "attr", type(node).__name__)
try:
return str(node)
except Exception:
return type(node).__name__
found_type = None
def _expr_type(e):
if e is None:
return "None"
if isinstance(e, ast.Constant):
return type(e.value).__name__
if isinstance(e, ast.Name):
return e.id
if isinstance(e, ast.Call):
f = e.func
if isinstance(f, ast.Name):
return f.id
if isinstance(f, ast.Attribute):
try:
return ast.unparse(f)
except Exception:
return getattr(f, "attr", type(f).__name__)
try:
return ast.unparse(f)
except Exception:
return type(f).__name__
if isinstance(e, ast.Attribute):
try:
return ast.unparse(e)
except Exception:
return getattr(e, "attr", type(e).__name__)
try:
return ast.unparse(e)
except Exception:
return type(e).__name__
for walked_node in ast.walk(func_node):
if isinstance(walked_node, ast.Return):
t = _expr_type(walked_node.value)
if found_type is None:
found_type = t
elif found_type != t:
raise ValueError(f"Conflicting return types: {found_type} vs {t}")
return found_type or "None"

View File

@ -1,514 +0,0 @@
from llvmlite import ir
import ast
import logging
from pythonbpf.helper import (
HelperHandlerRegistry,
reset_scratch_pool,
)
from pythonbpf.type_deducer import ctypes_to_ir
from pythonbpf.expr import (
eval_expr,
handle_expr,
convert_to_bool,
VmlinuxHandlerRegistry,
)
from pythonbpf.assign_pass import (
handle_variable_assignment,
handle_struct_field_assignment,
)
from pythonbpf.allocation_pass import (
handle_assign_allocation,
allocate_temp_pool,
create_targets_and_rvals,
LocalSymbol,
)
from .function_debug_info import generate_function_debug_info
from .return_utils import handle_none_return, handle_xdp_return, is_xdp_name
from .function_metadata import get_probe_string, is_global_function, infer_return_type
logger = logging.getLogger(__name__)
# ============================================================================
# SECTION 1: Memory Allocation
# ============================================================================
def count_temps_in_call(call_node, local_sym_tab):
"""Count the number of temporary variables needed for a function call."""
count = {}
is_helper = False
# NOTE: We exclude print calls for now
if isinstance(call_node.func, ast.Name):
if (
HelperHandlerRegistry.has_handler(call_node.func.id)
and call_node.func.id != "print"
):
is_helper = True
func_name = call_node.func.id
elif isinstance(call_node.func, ast.Attribute):
if HelperHandlerRegistry.has_handler(call_node.func.attr):
is_helper = True
func_name = call_node.func.attr
if not is_helper:
return {} # No temps needed
for arg_idx in range(len(call_node.args)):
# NOTE: Count all non-name arguments
# For struct fields, if it is being passed as an argument,
# The struct object should already exist in the local_sym_tab
arg = call_node.args[arg_idx]
if isinstance(arg, ast.Name) or (
isinstance(arg, ast.Attribute) and arg.value.id in local_sym_tab
):
continue
param_type = HelperHandlerRegistry.get_param_type(func_name, arg_idx)
if isinstance(param_type, ir.PointerType):
pointee_type = param_type.pointee
count[pointee_type] = count.get(pointee_type, 0) + 1
return count
def handle_if_allocation(
module, builder, stmt, func, ret_type, map_sym_tab, local_sym_tab, structs_sym_tab
):
"""Recursively handle allocations in if/else branches."""
if stmt.body:
allocate_mem(
module,
builder,
stmt.body,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
if stmt.orelse:
allocate_mem(
module,
builder,
stmt.orelse,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
def allocate_mem(
module, builder, body, func, ret_type, map_sym_tab, local_sym_tab, structs_sym_tab
):
max_temps_needed = {}
def merge_type_counts(count_dict):
nonlocal max_temps_needed
for typ, cnt in count_dict.items():
max_temps_needed[typ] = max(max_temps_needed.get(typ, 0), cnt)
def update_max_temps_for_stmt(stmt):
nonlocal max_temps_needed
if isinstance(stmt, ast.If):
for s in stmt.body:
update_max_temps_for_stmt(s)
for s in stmt.orelse:
update_max_temps_for_stmt(s)
return
stmt_temps = {}
for node in ast.walk(stmt):
if isinstance(node, ast.Call):
call_temps = count_temps_in_call(node, local_sym_tab)
for typ, cnt in call_temps.items():
stmt_temps[typ] = stmt_temps.get(typ, 0) + cnt
merge_type_counts(stmt_temps)
for stmt in body:
update_max_temps_for_stmt(stmt)
# Handle allocations
if isinstance(stmt, ast.If):
handle_if_allocation(
module,
builder,
stmt,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
elif isinstance(stmt, ast.Assign):
handle_assign_allocation(
builder, stmt, local_sym_tab, map_sym_tab, structs_sym_tab
)
allocate_temp_pool(builder, max_temps_needed, local_sym_tab)
return local_sym_tab
# ============================================================================
# SECTION 2: Statement Handlers
# ============================================================================
def handle_assign(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
):
"""Handle assignment statements in the function body."""
# NOTE: Support multi-target assignments (e.g.: a, b = 1, 2)
targets, rvals = create_targets_and_rvals(stmt)
for target, rval in zip(targets, rvals):
if isinstance(target, ast.Name):
# NOTE: Simple variable assignment case: x = 5
var_name = target.id
result = handle_variable_assignment(
func,
module,
builder,
var_name,
rval,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if not result:
logger.error(f"Failed to handle assignment to {var_name}")
continue
if isinstance(target, ast.Attribute):
# NOTE: Struct field assignment case: pkt.field = value
handle_struct_field_assignment(
func,
module,
builder,
target,
rval,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
continue
# Unsupported target type
logger.error(f"Unsupported assignment target: {ast.dump(target)}")
def handle_cond(
func, module, builder, cond, local_sym_tab, map_sym_tab, structs_sym_tab=None
):
val = eval_expr(
func, module, builder, cond, local_sym_tab, map_sym_tab, structs_sym_tab
)[0]
return convert_to_bool(builder, val)
def handle_if(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab=None
):
"""Handle if statements in the function body."""
logger.info("Handling if statement")
# start = builder.block.parent
then_block = func.append_basic_block(name="if.then")
merge_block = func.append_basic_block(name="if.end")
if stmt.orelse:
else_block = func.append_basic_block(name="if.else")
else:
else_block = None
cond = handle_cond(
func, module, builder, stmt.test, local_sym_tab, map_sym_tab, structs_sym_tab
)
if else_block:
builder.cbranch(cond, then_block, else_block)
else:
builder.cbranch(cond, then_block, merge_block)
builder.position_at_end(then_block)
for s in stmt.body:
process_stmt(
func, module, builder, s, local_sym_tab, map_sym_tab, structs_sym_tab, False
)
if not builder.block.is_terminated:
builder.branch(merge_block)
if else_block:
builder.position_at_end(else_block)
for s in stmt.orelse:
process_stmt(
func,
module,
builder,
s,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
False,
)
if not builder.block.is_terminated:
builder.branch(merge_block)
builder.position_at_end(merge_block)
def handle_return(builder, stmt, local_sym_tab, ret_type):
logger.info(f"Handling return statement: {ast.dump(stmt)}")
if stmt.value is None:
return handle_none_return(builder)
elif isinstance(stmt.value, ast.Name) and is_xdp_name(stmt.value.id):
return handle_xdp_return(stmt, builder, ret_type)
else:
val = eval_expr(
func=None,
module=None,
builder=builder,
expr=stmt.value,
local_sym_tab=local_sym_tab,
map_sym_tab={},
structs_sym_tab={},
)
logger.info(f"Evaluated return expression to {val}")
builder.ret(val[0])
return True
def process_stmt(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
did_return,
ret_type=ir.IntType(64),
):
logger.info(f"Processing statement: {ast.dump(stmt)}")
reset_scratch_pool()
if isinstance(stmt, ast.Expr):
handle_expr(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
elif isinstance(stmt, ast.Assign):
handle_assign(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
)
elif isinstance(stmt, ast.AugAssign):
raise SyntaxError("Augmented assignment not supported")
elif isinstance(stmt, ast.If):
handle_if(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
)
elif isinstance(stmt, ast.Return):
did_return = handle_return(
builder,
stmt,
local_sym_tab,
ret_type,
)
return did_return
# ============================================================================
# SECTION 3: Function Body Processing
# ============================================================================
def process_func_body(
module,
builder,
func_node,
func,
ret_type,
map_sym_tab,
structs_sym_tab,
):
"""Process the body of a bpf function"""
# TODO: A lot. We just have print -> bpf_trace_printk for now
did_return = False
local_sym_tab = {}
# Add the context parameter (first function argument) to the local symbol table
if func_node.args.args and len(func_node.args.args) > 0:
context_arg = func_node.args.args[0]
context_name = context_arg.arg
if hasattr(context_arg, "annotation") and context_arg.annotation:
if isinstance(context_arg.annotation, ast.Name):
context_type_name = context_arg.annotation.id
elif isinstance(context_arg.annotation, ast.Attribute):
context_type_name = context_arg.annotation.attr
else:
raise TypeError(
f"Unsupported annotation type: {ast.dump(context_arg.annotation)}"
)
if VmlinuxHandlerRegistry.is_vmlinux_struct(context_type_name):
resolved_type = VmlinuxHandlerRegistry.get_struct_type(
context_type_name
)
context_type = LocalSymbol(None, None, resolved_type)
local_sym_tab[context_name] = context_type
logger.info(f"Added argument '{context_name}' to local symbol table")
# pre-allocate dynamic variables
local_sym_tab = allocate_mem(
module,
builder,
func_node.body,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
logger.info(f"Local symbol table: {local_sym_tab.keys()}")
for stmt in func_node.body:
did_return = process_stmt(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
did_return,
ret_type,
)
if not did_return:
builder.ret(ir.Constant(ir.IntType(64), 0))
def process_bpf_chunk(func_node, module, return_type, map_sym_tab, structs_sym_tab):
"""Process a single BPF chunk (function) and emit corresponding LLVM IR."""
func_name = func_node.name
ret_type = return_type
# TODO: parse parameters
param_types = []
if func_node.args.args:
# Assume first arg to be ctx
param_types.append(ir.PointerType())
func_ty = ir.FunctionType(ret_type, param_types)
func = ir.Function(module, func_ty, func_name)
func.linkage = "dso_local"
func.attributes.add("nounwind")
func.attributes.add("noinline")
# func.attributes.add("optnone")
if func_node.args.args:
# Only look at the first argument for now
param = func.args[0]
param.add_attribute("nocapture")
probe_string = get_probe_string(func_node)
if probe_string is not None:
func.section = probe_string
block = func.append_basic_block(name="entry")
builder = ir.IRBuilder(block)
process_func_body(
module,
builder,
func_node,
func,
ret_type,
map_sym_tab,
structs_sym_tab,
)
return func
# ============================================================================
# SECTION 4: Top-Level Function Processor
# ============================================================================
def func_proc(tree, module, chunks, map_sym_tab, structs_sym_tab):
for func_node in chunks:
if is_global_function(func_node):
continue
func_type = get_probe_string(func_node)
logger.info(f"Found probe_string of {func_node.name}: {func_type}")
func = process_bpf_chunk(
func_node,
module,
ctypes_to_ir(infer_return_type(func_node)),
map_sym_tab,
structs_sym_tab,
)
logger.info(f"Generating Debug Info for Function {func_node.name}")
generate_function_debug_info(func_node, module, func)
# TODO: WIP, for string assignment to fixed-size arrays
def assign_string_to_array(builder, target_array_ptr, source_string_ptr, array_length):
"""
Copy a string (i8*) to a fixed-size array ([N x i8]*)
"""
# Create a loop to copy characters one by one
# entry_block = builder.block
copy_block = builder.append_basic_block("copy_char")
end_block = builder.append_basic_block("copy_end")
# Create loop counter
i = builder.alloca(ir.IntType(32))
builder.store(ir.Constant(ir.IntType(32), 0), i)
# Start the loop
builder.branch(copy_block)
# Copy loop
builder.position_at_end(copy_block)
idx = builder.load(i)
in_bounds = builder.icmp_unsigned(
"<", idx, ir.Constant(ir.IntType(32), array_length)
)
builder.cbranch(in_bounds, copy_block, end_block)
with builder.if_then(in_bounds):
# Load character from source
src_ptr = builder.gep(source_string_ptr, [idx])
char = builder.load(src_ptr)
# Store character in target
dst_ptr = builder.gep(target_array_ptr, [ir.Constant(ir.IntType(32), 0), idx])
builder.store(char, dst_ptr)
# Increment counter
next_idx = builder.add(idx, ir.Constant(ir.IntType(32), 1))
builder.store(next_idx, i)
builder.position_at_end(end_block)
# Ensure null termination
last_idx = ir.Constant(ir.IntType(32), array_length - 1)
null_ptr = builder.gep(target_array_ptr, [ir.Constant(ir.IntType(32), 0), last_idx])
builder.store(ir.Constant(ir.IntType(8), 0), null_ptr)

View File

@ -1,44 +0,0 @@
import logging
import ast
from llvmlite import ir
logger: logging.Logger = logging.getLogger(__name__)
XDP_ACTIONS = {
"XDP_ABORTED": 0,
"XDP_DROP": 1,
"XDP_PASS": 2,
"XDP_TX": 3,
"XDP_REDIRECT": 4,
}
def handle_none_return(builder) -> bool:
"""Handle return or return None -> returns 0."""
builder.ret(ir.Constant(ir.IntType(64), 0))
logger.debug("Generated default return: 0")
return True
def is_xdp_name(name: str) -> bool:
"""Check if a name is an XDP action"""
return name in XDP_ACTIONS
def handle_xdp_return(stmt: ast.Return, builder, ret_type) -> bool:
"""Handle XDP returns"""
if not isinstance(stmt.value, ast.Name):
return False
action_name = stmt.value.id
if action_name not in XDP_ACTIONS:
raise ValueError(
f"Unknown XDP action: {action_name}. Available: {XDP_ACTIONS.keys()}"
)
value = XDP_ACTIONS[action_name]
builder.ret(ir.Constant(ret_type, value))
logger.debug(f"Generated XDP action return: {action_name} = {value}")
return True

714
pythonbpf/functions_pass.py Normal file
View File

@ -0,0 +1,714 @@
from llvmlite import ir
import ast
from typing import Any
from .helper import HelperHandlerRegistry, handle_helper_call
from .type_deducer import ctypes_to_ir
from .binary_ops import handle_binary_op
from .expr_pass import eval_expr, handle_expr
local_var_metadata: dict[str | Any, Any] = {}
def get_probe_string(func_node):
"""Extract the probe string from the decorator of the function node."""
# TODO: right now we have the whole string in the section decorator
# But later we can implement typed tuples for tracepoints and kprobes
# For helper functions, we return "helper"
for decorator in func_node.decorator_list:
if isinstance(decorator, ast.Name) and decorator.id == "bpfglobal":
return None
if isinstance(decorator, ast.Call) and isinstance(decorator.func, ast.Name):
if decorator.func.id == "section" and len(decorator.args) == 1:
arg = decorator.args[0]
if isinstance(arg, ast.Constant) and isinstance(arg.value, str):
return arg.value
return "helper"
def handle_assign(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
):
"""Handle assignment statements in the function body."""
if len(stmt.targets) != 1:
print("Unsupported multiassignment")
return
num_types = ("c_int32", "c_int64", "c_uint32", "c_uint64")
target = stmt.targets[0]
print(f"Handling assignment to {ast.dump(target)}")
if not isinstance(target, ast.Name) and not isinstance(target, ast.Attribute):
print("Unsupported assignment target")
return
var_name = target.id if isinstance(target, ast.Name) else target.value.id
rval = stmt.value
if isinstance(target, ast.Attribute):
# struct field assignment
field_name = target.attr
if var_name in local_sym_tab and var_name in local_var_metadata:
struct_type = local_var_metadata[var_name]
struct_info = structs_sym_tab[struct_type]
if field_name in struct_info.fields:
field_ptr = struct_info.gep(
builder, local_sym_tab[var_name][0], field_name
)
val = eval_expr(
func,
module,
builder,
rval,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if isinstance(struct_info.field_type(field_name), ir.ArrayType) and val[
1
] == ir.PointerType(ir.IntType(8)):
# TODO: Figure it out, not a priority rn
# Special case for string assignment to char array
# str_len = struct_info["field_types"][field_idx].count
# assign_string_to_array(builder, field_ptr, val[0], str_len)
# print(f"Assigned to struct field {var_name}.{field_name}")
pass
if val is None:
print("Failed to evaluate struct field assignment")
return
print(field_ptr)
builder.store(val[0], field_ptr)
print(f"Assigned to struct field {var_name}.{field_name}")
return
elif isinstance(rval, ast.Constant):
if isinstance(rval.value, bool):
if rval.value:
builder.store(ir.Constant(ir.IntType(1), 1), local_sym_tab[var_name][0])
else:
builder.store(ir.Constant(ir.IntType(1), 0), local_sym_tab[var_name][0])
print(f"Assigned constant {rval.value} to {var_name}")
elif isinstance(rval.value, int):
# Assume c_int64 for now
# var = builder.alloca(ir.IntType(64), name=var_name)
# var.align = 8
builder.store(
ir.Constant(ir.IntType(64), rval.value), local_sym_tab[var_name][0]
)
# local_sym_tab[var_name] = var
print(f"Assigned constant {rval.value} to {var_name}")
elif isinstance(rval.value, str):
str_val = rval.value.encode("utf-8") + b"\x00"
str_const = ir.Constant(
ir.ArrayType(ir.IntType(8), len(str_val)), bytearray(str_val)
)
global_str = ir.GlobalVariable(
module, str_const.type, name=f"{var_name}_str"
)
global_str.linkage = "internal"
global_str.global_constant = True
global_str.initializer = str_const
str_ptr = builder.bitcast(global_str, ir.PointerType(ir.IntType(8)))
builder.store(str_ptr, local_sym_tab[var_name][0])
print(f"Assigned string constant '{rval.value}' to {var_name}")
else:
print("Unsupported constant type")
elif isinstance(rval, ast.Call):
if isinstance(rval.func, ast.Name):
call_type = rval.func.id
print(f"Assignment call type: {call_type}")
if (
call_type in num_types
and len(rval.args) == 1
and isinstance(rval.args[0], ast.Constant)
and isinstance(rval.args[0].value, int)
):
ir_type = ctypes_to_ir(call_type)
# var = builder.alloca(ir_type, name=var_name)
# var.align = ir_type.width // 8
builder.store(
ir.Constant(ir_type, rval.args[0].value), local_sym_tab[var_name][0]
)
print(
f"Assigned {call_type} constant "
f"{rval.args[0].value} to {var_name}"
)
# local_sym_tab[var_name] = var
elif HelperHandlerRegistry.has_handler(call_type):
# var = builder.alloca(ir.IntType(64), name=var_name)
# var.align = 8
val = handle_helper_call(
rval,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
local_var_metadata,
)
builder.store(val[0], local_sym_tab[var_name][0])
# local_sym_tab[var_name] = var
print(f"Assigned constant {rval.func.id} to {var_name}")
elif call_type == "deref" and len(rval.args) == 1:
print(f"Handling deref assignment {ast.dump(rval)}")
val = eval_expr(
func,
module,
builder,
rval,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
if val is None:
print("Failed to evaluate deref argument")
return
print(f"Dereferenced value: {val}, storing in {var_name}")
builder.store(val[0], local_sym_tab[var_name][0])
# local_sym_tab[var_name] = var
print(f"Dereferenced and assigned to {var_name}")
elif call_type in structs_sym_tab and len(rval.args) == 0:
struct_info = structs_sym_tab[call_type]
ir_type = struct_info.ir_type
# var = builder.alloca(ir_type, name=var_name)
# Null init
builder.store(ir.Constant(ir_type, None), local_sym_tab[var_name][0])
local_var_metadata[var_name] = call_type
print(f"Assigned struct {call_type} to {var_name}")
# local_sym_tab[var_name] = var
else:
print(f"Unsupported assignment call type: {call_type}")
elif isinstance(rval.func, ast.Attribute):
print(f"Assignment call attribute: {ast.dump(rval.func)}")
if isinstance(rval.func.value, ast.Name):
# TODO: probably a struct access
print(f"TODO STRUCT ACCESS {ast.dump(rval)}")
elif isinstance(rval.func.value, ast.Call) and isinstance(
rval.func.value.func, ast.Name
):
map_name = rval.func.value.func.id
method_name = rval.func.attr
if map_name in map_sym_tab:
if HelperHandlerRegistry.has_handler(method_name):
val = handle_helper_call(
rval,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
local_var_metadata,
)
# var = builder.alloca(ir.IntType(64), name=var_name)
# var.align = 8
builder.store(val[0], local_sym_tab[var_name][0])
# local_sym_tab[var_name] = var
else:
print("Unsupported assignment call structure")
else:
print("Unsupported assignment call function type")
elif isinstance(rval, ast.BinOp):
handle_binary_op(
rval, module, builder, var_name, local_sym_tab, map_sym_tab, func
)
else:
print("Unsupported assignment value type")
def handle_cond(func, module, builder, cond, local_sym_tab, map_sym_tab):
if isinstance(cond, ast.Constant):
if isinstance(cond.value, bool):
return ir.Constant(ir.IntType(1), int(cond.value))
elif isinstance(cond.value, int):
return ir.Constant(ir.IntType(1), int(bool(cond.value)))
else:
print("Unsupported constant type in condition")
return None
elif isinstance(cond, ast.Name):
if cond.id in local_sym_tab:
var = local_sym_tab[cond.id][0]
val = builder.load(var)
if val.type != ir.IntType(1):
# Convert nonzero values to true, zero to false
if isinstance(val.type, ir.PointerType):
# For pointer types, compare with null pointer
zero = ir.Constant(val.type, None)
else:
# For integer types, compare with zero
zero = ir.Constant(val.type, 0)
val = builder.icmp_signed("!=", val, zero)
return val
else:
print(f"Undefined variable {cond.id} in condition")
return None
elif isinstance(cond, ast.Compare):
lhs = eval_expr(func, module, builder, cond.left, local_sym_tab, map_sym_tab)[0]
if len(cond.ops) != 1 or len(cond.comparators) != 1:
print("Unsupported complex comparison")
return None
rhs = eval_expr(
func, module, builder, cond.comparators[0], local_sym_tab, map_sym_tab
)[0]
op = cond.ops[0]
if lhs.type != rhs.type:
if isinstance(lhs.type, ir.IntType) and isinstance(rhs.type, ir.IntType):
# Extend the smaller type to the larger type
if lhs.type.width < rhs.type.width:
lhs = builder.sext(lhs, rhs.type)
elif lhs.type.width > rhs.type.width:
rhs = builder.sext(rhs, lhs.type)
else:
print("Type mismatch in comparison")
return None
if isinstance(op, ast.Eq):
return builder.icmp_signed("==", lhs, rhs)
elif isinstance(op, ast.NotEq):
return builder.icmp_signed("!=", lhs, rhs)
elif isinstance(op, ast.Lt):
return builder.icmp_signed("<", lhs, rhs)
elif isinstance(op, ast.LtE):
return builder.icmp_signed("<=", lhs, rhs)
elif isinstance(op, ast.Gt):
return builder.icmp_signed(">", lhs, rhs)
elif isinstance(op, ast.GtE):
return builder.icmp_signed(">=", lhs, rhs)
else:
print("Unsupported comparison operator")
return None
else:
print("Unsupported condition expression")
return None
def handle_if(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab=None
):
"""Handle if statements in the function body."""
print("Handling if statement")
# start = builder.block.parent
then_block = func.append_basic_block(name="if.then")
merge_block = func.append_basic_block(name="if.end")
if stmt.orelse:
else_block = func.append_basic_block(name="if.else")
else:
else_block = None
cond = handle_cond(func, module, builder, stmt.test, local_sym_tab, map_sym_tab)
if else_block:
builder.cbranch(cond, then_block, else_block)
else:
builder.cbranch(cond, then_block, merge_block)
builder.position_at_end(then_block)
for s in stmt.body:
process_stmt(
func, module, builder, s, local_sym_tab, map_sym_tab, structs_sym_tab, False
)
if not builder.block.is_terminated:
builder.branch(merge_block)
if else_block:
builder.position_at_end(else_block)
for s in stmt.orelse:
process_stmt(
func,
module,
builder,
s,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
False,
)
if not builder.block.is_terminated:
builder.branch(merge_block)
builder.position_at_end(merge_block)
def process_stmt(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
did_return,
ret_type=ir.IntType(64),
):
print(f"Processing statement: {ast.dump(stmt)}")
if isinstance(stmt, ast.Expr):
print(local_var_metadata)
handle_expr(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
local_var_metadata,
)
elif isinstance(stmt, ast.Assign):
handle_assign(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
)
elif isinstance(stmt, ast.AugAssign):
raise SyntaxError("Augmented assignment not supported")
elif isinstance(stmt, ast.If):
handle_if(
func, module, builder, stmt, map_sym_tab, local_sym_tab, structs_sym_tab
)
elif isinstance(stmt, ast.Return):
if stmt.value is None:
builder.ret(ir.Constant(ir.IntType(32), 0))
did_return = True
elif (
isinstance(stmt.value, ast.Call)
and isinstance(stmt.value.func, ast.Name)
and len(stmt.value.args) == 1
and isinstance(stmt.value.args[0], ast.Constant)
and isinstance(stmt.value.args[0].value, int)
):
call_type = stmt.value.func.id
if ctypes_to_ir(call_type) != ret_type:
raise ValueError(
"Return type mismatch: expected"
f"{ctypes_to_ir(call_type)}, got {call_type}"
)
else:
builder.ret(ir.Constant(ret_type, stmt.value.args[0].value))
did_return = True
elif isinstance(stmt.value, ast.Name):
if stmt.value.id == "XDP_PASS":
builder.ret(ir.Constant(ret_type, 2))
did_return = True
elif stmt.value.id == "XDP_DROP":
builder.ret(ir.Constant(ret_type, 1))
did_return = True
else:
raise ValueError("Failed to evaluate return expression")
else:
raise ValueError("Unsupported return value")
return did_return
def allocate_mem(
module, builder, body, func, ret_type, map_sym_tab, local_sym_tab, structs_sym_tab
):
for stmt in body:
if isinstance(stmt, ast.If):
if stmt.body:
local_sym_tab = allocate_mem(
module,
builder,
stmt.body,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
if stmt.orelse:
local_sym_tab = allocate_mem(
module,
builder,
stmt.orelse,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
elif isinstance(stmt, ast.Assign):
if len(stmt.targets) != 1:
print("Unsupported multiassignment")
continue
target = stmt.targets[0]
if not isinstance(target, ast.Name):
print("Unsupported assignment target")
continue
var_name = target.id
rval = stmt.value
if isinstance(rval, ast.Call):
if isinstance(rval.func, ast.Name):
call_type = rval.func.id
if call_type in ("c_int32", "c_int64", "c_uint32", "c_uint64"):
ir_type = ctypes_to_ir(call_type)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} of type {call_type}")
elif HelperHandlerRegistry.has_handler(call_type):
# Assume return type is int64 for now
ir_type = ir.IntType(64)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} for helper")
elif call_type == "deref" and len(rval.args) == 1:
# Assume return type is int64 for now
ir_type = ir.IntType(64)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} for deref")
elif call_type in structs_sym_tab:
struct_info = structs_sym_tab[call_type]
ir_type = struct_info.ir_type
var = builder.alloca(ir_type, name=var_name)
local_var_metadata[var_name] = call_type
print(
f"Pre-allocated variable {var_name} "
f"for struct {call_type}"
)
elif isinstance(rval.func, ast.Attribute):
ir_type = ir.PointerType(ir.IntType(64))
var = builder.alloca(ir_type, name=var_name)
# var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} for map")
else:
print("Unsupported assignment call function type")
continue
elif isinstance(rval, ast.Constant):
if isinstance(rval.value, bool):
ir_type = ir.IntType(1)
var = builder.alloca(ir_type, name=var_name)
var.align = 1
print(f"Pre-allocated variable {var_name} of type c_bool")
elif isinstance(rval.value, int):
# Assume c_int64 for now
ir_type = ir.IntType(64)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} of type c_int64")
elif isinstance(rval.value, str):
ir_type = ir.PointerType(ir.IntType(8))
var = builder.alloca(ir_type, name=var_name)
var.align = 8
print(f"Pre-allocated variable {var_name} of type string")
else:
print("Unsupported constant type")
continue
elif isinstance(rval, ast.BinOp):
# Assume c_int64 for now
ir_type = ir.IntType(64)
var = builder.alloca(ir_type, name=var_name)
var.align = ir_type.width // 8
print(f"Pre-allocated variable {var_name} of type c_int64")
else:
print("Unsupported assignment value type")
continue
local_sym_tab[var_name] = (var, ir_type)
return local_sym_tab
def process_func_body(
module, builder, func_node, func, ret_type, map_sym_tab, structs_sym_tab
):
"""Process the body of a bpf function"""
# TODO: A lot. We just have print -> bpf_trace_printk for now
did_return = False
local_sym_tab = {}
# pre-allocate dynamic variables
local_sym_tab = allocate_mem(
module,
builder,
func_node.body,
func,
ret_type,
map_sym_tab,
local_sym_tab,
structs_sym_tab,
)
print(f"Local symbol table: {local_sym_tab.keys()}")
for stmt in func_node.body:
did_return = process_stmt(
func,
module,
builder,
stmt,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
did_return,
ret_type,
)
if not did_return:
builder.ret(ir.Constant(ir.IntType(32), 0))
def process_bpf_chunk(func_node, module, return_type, map_sym_tab, structs_sym_tab):
"""Process a single BPF chunk (function) and emit corresponding LLVM IR."""
func_name = func_node.name
ret_type = return_type
# TODO: parse parameters
param_types = []
if func_node.args.args:
# Assume first arg to be ctx
param_types.append(ir.PointerType())
func_ty = ir.FunctionType(ret_type, param_types)
func = ir.Function(module, func_ty, func_name)
func.linkage = "dso_local"
func.attributes.add("nounwind")
func.attributes.add("noinline")
func.attributes.add("optnone")
if func_node.args.args:
# Only look at the first argument for now
param = func.args[0]
param.add_attribute("nocapture")
probe_string = get_probe_string(func_node)
if probe_string is not None:
func.section = probe_string
block = func.append_basic_block(name="entry")
builder = ir.IRBuilder(block)
process_func_body(
module, builder, func_node, func, ret_type, map_sym_tab, structs_sym_tab
)
return func
def func_proc(tree, module, chunks, map_sym_tab, structs_sym_tab):
for func_node in chunks:
is_global = False
for decorator in func_node.decorator_list:
if isinstance(decorator, ast.Name) and decorator.id in (
"map",
"bpfglobal",
"struct",
):
is_global = True
break
if is_global:
continue
func_type = get_probe_string(func_node)
print(f"Found probe_string of {func_node.name}: {func_type}")
process_bpf_chunk(
func_node,
module,
ctypes_to_ir(infer_return_type(func_node)),
map_sym_tab,
structs_sym_tab,
)
def infer_return_type(func_node: ast.FunctionDef):
if not isinstance(func_node, (ast.FunctionDef, ast.AsyncFunctionDef)):
raise TypeError("Expected ast.FunctionDef")
if func_node.returns is not None:
try:
return ast.unparse(func_node.returns)
except Exception:
node = func_node.returns
if isinstance(node, ast.Name):
return node.id
if isinstance(node, ast.Attribute):
return getattr(node, "attr", type(node).__name__)
try:
return str(node)
except Exception:
return type(node).__name__
found_type = None
def _expr_type(e):
if e is None:
return "None"
if isinstance(e, ast.Constant):
return type(e.value).__name__
if isinstance(e, ast.Name):
return e.id
if isinstance(e, ast.Call):
f = e.func
if isinstance(f, ast.Name):
return f.id
if isinstance(f, ast.Attribute):
try:
return ast.unparse(f)
except Exception:
return getattr(f, "attr", type(f).__name__)
try:
return ast.unparse(f)
except Exception:
return type(f).__name__
if isinstance(e, ast.Attribute):
try:
return ast.unparse(e)
except Exception:
return getattr(e, "attr", type(e).__name__)
try:
return ast.unparse(e)
except Exception:
return type(e).__name__
for walked_node in ast.walk(func_node):
if isinstance(walked_node, ast.Return):
t = _expr_type(walked_node.value)
if found_type is None:
found_type = t
elif found_type != t:
raise ValueError("Conflicting return types:" f"{found_type} vs {t}")
return found_type or "None"
# For string assignment to fixed-size arrays
def assign_string_to_array(builder, target_array_ptr, source_string_ptr, array_length):
"""
Copy a string (i8*) to a fixed-size array ([N x i8]*)
"""
# Create a loop to copy characters one by one
# entry_block = builder.block
copy_block = builder.append_basic_block("copy_char")
end_block = builder.append_basic_block("copy_end")
# Create loop counter
i = builder.alloca(ir.IntType(32))
builder.store(ir.Constant(ir.IntType(32), 0), i)
# Start the loop
builder.branch(copy_block)
# Copy loop
builder.position_at_end(copy_block)
idx = builder.load(i)
in_bounds = builder.icmp_unsigned(
"<", idx, ir.Constant(ir.IntType(32), array_length)
)
builder.cbranch(in_bounds, copy_block, end_block)
with builder.if_then(in_bounds):
# Load character from source
src_ptr = builder.gep(source_string_ptr, [idx])
char = builder.load(src_ptr)
# Store character in target
dst_ptr = builder.gep(target_array_ptr, [ir.Constant(ir.IntType(32), 0), idx])
builder.store(char, dst_ptr)
# Increment counter
next_idx = builder.add(idx, ir.Constant(ir.IntType(32), 1))
builder.store(next_idx, i)
builder.position_at_end(end_block)
# Ensure null termination
last_idx = ir.Constant(ir.IntType(32), array_length - 1)
null_ptr = builder.gep(target_array_ptr, [ir.Constant(ir.IntType(32), 0), last_idx])
builder.store(ir.Constant(ir.IntType(8), 0), null_ptr)

View File

@ -1,121 +1,8 @@
from llvmlite import ir
import ast
from logging import Logger
import logging
from .type_deducer import ctypes_to_ir
logger: Logger = logging.getLogger(__name__)
# TODO: this is going to be a huge fuck of a headache in the future.
global_sym_tab = []
def populate_global_symbol_table(tree, module: ir.Module):
for node in tree.body:
if isinstance(node, ast.FunctionDef):
for dec in node.decorator_list:
if (
isinstance(dec, ast.Call)
and isinstance(dec.func, ast.Name)
and dec.func.id == "section"
and len(dec.args) == 1
and isinstance(dec.args[0], ast.Constant)
and isinstance(dec.args[0].value, str)
):
global_sym_tab.append(node)
elif isinstance(dec, ast.Name) and dec.id == "bpfglobal":
global_sym_tab.append(node)
elif isinstance(dec, ast.Name) and dec.id == "map":
global_sym_tab.append(node)
return False
def emit_global(module: ir.Module, node, name):
logger.info(f"global identifier {name} processing")
# deduce LLVM type from the annotated return
if not isinstance(node.returns, ast.Name):
raise ValueError(f"Unsupported return annotation {ast.dump(node.returns)}")
ty = ctypes_to_ir(node.returns.id)
# extract the return expression
# TODO: turn this return extractor into a generic function I can use everywhere.
ret_stmt = node.body[0]
if not isinstance(ret_stmt, ast.Return) or ret_stmt.value is None:
raise ValueError(f"Global '{name}' has no valid return")
init_val = ret_stmt.value
# simple constant like "return 0"
if isinstance(init_val, ast.Constant):
llvm_init = ir.Constant(ty, init_val.value)
# variable reference like "return SOME_CONST"
elif isinstance(init_val, ast.Name):
# need symbol resolution here, stub as 0 for now
raise ValueError(f"Name reference {init_val.id} not yet supported")
# constructor call like "return c_int64(0)" or dataclass(...)
elif isinstance(init_val, ast.Call):
if len(init_val.args) >= 1 and isinstance(init_val.args[0], ast.Constant):
llvm_init = ir.Constant(ty, init_val.args[0].value)
else:
logger.info("Defaulting to zero as no constant argument found")
llvm_init = ir.Constant(ty, 0)
else:
raise ValueError(f"Unsupported return expr {ast.dump(init_val)}")
gvar = ir.GlobalVariable(module, ty, name=name)
gvar.initializer = llvm_init
gvar.align = 8
gvar.linkage = "dso_local"
gvar.global_constant = False
return gvar
def globals_processing(tree, module):
"""Process stuff decorated with @bpf and @bpfglobal except license and return the section name"""
globals_sym_tab = []
for node in tree.body:
# Skip non-assignment and non-function nodes
if not (isinstance(node, ast.FunctionDef)):
continue
# Get the name based on node type
if isinstance(node, ast.FunctionDef):
name = node.name
else:
continue
# Check for duplicate names
if name in globals_sym_tab:
raise SyntaxError(f"ERROR: Global name '{name}' previously defined")
else:
globals_sym_tab.append(name)
if isinstance(node, ast.FunctionDef) and node.name != "LICENSE":
decorators = [
dec.id for dec in node.decorator_list if isinstance(dec, ast.Name)
]
if "bpf" in decorators and "bpfglobal" in decorators:
if (
len(node.body) == 1
and isinstance(node.body[0], ast.Return)
and node.body[0].value is not None
and isinstance(
node.body[0].value, (ast.Constant, ast.Name, ast.Call)
)
):
emit_global(module, node, name)
else:
raise SyntaxError(f"ERROR: Invalid syntax for {name} global")
return None
def emit_llvm_compiler_used(module: ir.Module, names: list[str]):
def emit_globals(module: ir.Module, names: list[str]):
"""
Emit the @llvm.compiler.used global given a list of function/global names.
"""
@ -137,7 +24,7 @@ def emit_llvm_compiler_used(module: ir.Module, names: list[str]):
gv.section = "llvm.metadata"
def globals_list_creation(tree, module: ir.Module):
def globals_processing(tree, module: ir.Module):
collected = ["LICENSE"]
for node in tree.body:
@ -153,11 +40,10 @@ def globals_list_creation(tree, module: ir.Module):
):
collected.append(node.name)
# NOTE: all globals other than
# elif isinstance(dec, ast.Name) and dec.id == "bpfglobal":
# collected.append(node.name)
elif isinstance(dec, ast.Name) and dec.id == "bpfglobal":
collected.append(node.name)
elif isinstance(dec, ast.Name) and dec.id == "map":
collected.append(node.name)
emit_llvm_compiler_used(module, collected)
emit_globals(module, collected)

View File

@ -1,97 +1,13 @@
from .helper_registry import HelperHandlerRegistry
from .helper_utils import reset_scratch_pool
from .bpf_helper_handler import (
handle_helper_call,
emit_probe_read_kernel_str_call,
emit_probe_read_kernel_call,
)
from .helpers import (
ktime,
pid,
deref,
comm,
probe_read_str,
random,
probe_read,
smp_processor_id,
uid,
skb_store_bytes,
get_current_cgroup_id,
get_stack,
XDP_DROP,
XDP_PASS,
)
# Register the helper handler with expr module
def _register_helper_handler():
"""Register helper call handler with the expression evaluator"""
from pythonbpf.expr.expr_pass import CallHandlerRegistry
def helper_call_handler(
call, module, builder, func, local_sym_tab, map_sym_tab, structs_sym_tab
):
"""Check if call is a helper and handle it"""
import ast
# Check for direct helper calls (e.g., ktime(), print())
if isinstance(call.func, ast.Name):
if HelperHandlerRegistry.has_handler(call.func.id):
return handle_helper_call(
call,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
# Check for method calls (e.g., map.lookup())
elif isinstance(call.func, ast.Attribute):
method_name = call.func.attr
# Handle: my_map.lookup(key)
if isinstance(call.func.value, ast.Name):
obj_name = call.func.value.id
if map_sym_tab and obj_name in map_sym_tab:
if HelperHandlerRegistry.has_handler(method_name):
return handle_helper_call(
call,
module,
builder,
func,
local_sym_tab,
map_sym_tab,
structs_sym_tab,
)
return None
CallHandlerRegistry.set_handler(helper_call_handler)
# Register on module import
_register_helper_handler()
from .helper_utils import HelperHandlerRegistry
from .bpf_helper_handler import handle_helper_call
from .helpers import ktime, pid, deref, XDP_DROP, XDP_PASS
__all__ = [
"HelperHandlerRegistry",
"reset_scratch_pool",
"handle_helper_call",
"emit_probe_read_kernel_str_call",
"emit_probe_read_kernel_call",
"get_current_cgroup_id",
"ktime",
"pid",
"deref",
"comm",
"probe_read_str",
"random",
"probe_read",
"smp_processor_id",
"uid",
"skb_store_bytes",
"get_stack",
"XDP_DROP",
"XDP_PASS",
]

File diff suppressed because it is too large Load Diff

View File

@ -1,61 +0,0 @@
from dataclasses import dataclass
from llvmlite import ir
from typing import Callable
@dataclass
class HelperSignature:
"""Signature of a BPF helper function"""
arg_types: list[ir.Type]
return_type: ir.Type
func: Callable
class HelperHandlerRegistry:
"""Registry for BPF helpers"""
_handlers: dict[str, HelperSignature] = {}
@classmethod
def register(cls, helper_name, param_types=None, return_type=None):
"""Decorator to register a handler function for a helper"""
def decorator(func):
helper_sig = HelperSignature(
arg_types=param_types, return_type=return_type, func=func
)
cls._handlers[helper_name] = helper_sig
return func
return decorator
@classmethod
def get_handler(cls, helper_name):
"""Get the handler function for a helper"""
handler = cls._handlers.get(helper_name)
return handler.func if handler else None
@classmethod
def has_handler(cls, helper_name):
"""Check if a handler function is registered for a helper"""
return helper_name in cls._handlers
@classmethod
def get_signature(cls, helper_name):
"""Get the signature of a helper function"""
return cls._handlers.get(helper_name)
@classmethod
def get_param_type(cls, helper_name, index):
"""Get the type of a parameter of a helper function by the index"""
signature = cls.get_signature(helper_name)
if signature and signature.arg_types and 0 <= index < len(signature.arg_types):
return signature.arg_types[index]
return None
@classmethod
def get_return_type(cls, helper_name):
"""Get the return type of a helper function"""
signature = cls.get_signature(helper_name)
return signature.return_type if signature else None

View File

@ -1,171 +1,67 @@
import ast
import logging
from collections.abc import Callable
from llvmlite import ir
from pythonbpf.expr import (
get_operand_value,
eval_expr,
access_struct_field,
)
from pythonbpf.expr_pass import eval_expr
logger = logging.getLogger(__name__)
class ScratchPoolManager:
"""Manage the temporary helper variables in local_sym_tab"""
class HelperHandlerRegistry:
"""Registry for BPF helpers"""
def __init__(self):
self._counters = {}
_handlers: dict[str, Callable] = {}
@property
def counter(self):
return sum(self._counters.values())
@classmethod
def register(cls, helper_name):
"""Decorator to register a handler function for a helper"""
def reset(self):
self._counters.clear()
logger.debug("Scratch pool counter reset to 0")
def decorator(func):
cls._handlers[helper_name] = func
return func
def _get_type_name(self, ir_type):
if isinstance(ir_type, ir.PointerType):
return "ptr"
elif isinstance(ir_type, ir.IntType):
return f"i{ir_type.width}"
elif isinstance(ir_type, ir.ArrayType):
return f"[{ir_type.count}x{self._get_type_name(ir_type.element)}]"
else:
return str(ir_type).replace(" ", "")
return decorator
def get_next_temp(self, local_sym_tab, expected_type=None):
# Default to i64 if no expected type provided
type_name = self._get_type_name(expected_type) if expected_type else "i64"
if type_name not in self._counters:
self._counters[type_name] = 0
@classmethod
def get_handler(cls, helper_name):
"""Get the handler function for a helper"""
return cls._handlers.get(helper_name)
counter = self._counters[type_name]
temp_name = f"__helper_temp_{type_name}_{counter}"
self._counters[type_name] += 1
if temp_name not in local_sym_tab:
raise ValueError(
f"Scratch pool exhausted or inadequate: {temp_name}. "
f"Type: {type_name} Counter: {counter}"
)
logger.debug(f"Using {temp_name} for type {type_name}")
return local_sym_tab[temp_name].var, temp_name
_temp_pool_manager = ScratchPoolManager() # Singleton instance
def reset_scratch_pool():
"""Reset the scratch pool counter"""
_temp_pool_manager.reset()
# ============================================================================
# Argument Preparation
# ============================================================================
@classmethod
def has_handler(cls, helper_name):
"""Check if a handler function is registered for a helper"""
return helper_name in cls._handlers
def get_var_ptr_from_name(var_name, local_sym_tab):
"""Get a pointer to a variable from the symbol table."""
if local_sym_tab and var_name in local_sym_tab:
return local_sym_tab[var_name].var
return local_sym_tab[var_name][0]
raise ValueError(f"Variable '{var_name}' not found in local symbol table")
def create_int_constant_ptr(value, builder, local_sym_tab, int_width=64):
def create_int_constant_ptr(value, builder, int_width=64):
"""Create a pointer to an integer constant."""
# Default to 64-bit integer
int_type = ir.IntType(int_width)
ptr, temp_name = _temp_pool_manager.get_next_temp(local_sym_tab, int_type)
logger.info(f"Using temp variable '{temp_name}' for int constant {value}")
const_val = ir.Constant(int_type, value)
builder.store(const_val, ptr)
ptr = builder.alloca(int_type)
ptr.align = int_type.width // 8
builder.store(ir.Constant(int_type, value), ptr)
return ptr
def get_or_create_ptr_from_arg(
func,
module,
arg,
builder,
local_sym_tab,
map_sym_tab,
struct_sym_tab=None,
expected_type=None,
):
def get_or_create_ptr_from_arg(arg, builder, local_sym_tab):
"""Extract or create pointer from the call arguments."""
logger.info(f"Getting pointer from arg: {ast.dump(arg)}")
sz = None
if isinstance(arg, ast.Name):
# Stack space is already allocated
ptr = get_var_ptr_from_name(arg.id, local_sym_tab)
elif isinstance(arg, ast.Constant) and isinstance(arg.value, int):
int_width = 64 # Default to i64
if expected_type and isinstance(expected_type, ir.IntType):
int_width = expected_type.width
ptr = create_int_constant_ptr(arg.value, builder, local_sym_tab, int_width)
elif isinstance(arg, ast.Attribute):
# A struct field
struct_name = arg.value.id
field_name = arg.attr
if not local_sym_tab or struct_name not in local_sym_tab:
raise ValueError(f"Struct '{struct_name}' not found")
struct_type = local_sym_tab[struct_name].metadata
if not struct_sym_tab or struct_type not in struct_sym_tab:
raise ValueError(f"Struct type '{struct_type}' not found")
struct_info = struct_sym_tab[struct_type]
if field_name not in struct_info.fields:
raise ValueError(
f"Field '{field_name}' not found in struct '{struct_name}'"
)
field_type = struct_info.field_type(field_name)
struct_ptr = local_sym_tab[struct_name].var
# Special handling for char arrays
if (
isinstance(field_type, ir.ArrayType)
and isinstance(field_type.element, ir.IntType)
and field_type.element.width == 8
):
ptr, sz = get_char_array_ptr_and_size(
arg, builder, local_sym_tab, struct_sym_tab, func
)
if not ptr:
raise ValueError("Failed to get char array pointer from struct field")
else:
ptr = struct_info.gep(builder, struct_ptr, field_name)
ptr = create_int_constant_ptr(arg.value, builder)
else:
# NOTE: For any integer expression reaching this branch, it is probably a struct field or a binop
# Evaluate the expression and store the result in a temp variable
val = get_operand_value(
func, module, arg, builder, local_sym_tab, map_sym_tab, struct_sym_tab
raise NotImplementedError(
"Only simple variable names are supported as args in map helpers."
)
if val is None:
raise ValueError("Failed to evaluate expression for helper arg.")
ptr, temp_name = _temp_pool_manager.get_next_temp(local_sym_tab, expected_type)
logger.info(f"Using temp variable '{temp_name}' for expression result")
if (
isinstance(val.type, ir.IntType)
and expected_type
and val.type.width > expected_type.width
):
val = builder.trunc(val, expected_type)
builder.store(val, ptr)
# NOTE: For char arrays, also return size
if sz:
return ptr, sz
return ptr
@ -176,7 +72,7 @@ def get_flags_val(arg, builder, local_sym_tab):
if isinstance(arg, ast.Name):
if local_sym_tab and arg.id in local_sym_tab:
flags_ptr = local_sym_tab[arg.id].var
flags_ptr = local_sym_tab[arg.id][0]
return builder.load(flags_ptr)
else:
raise ValueError(f"Variable '{arg.id}' not found in local symbol table")
@ -188,204 +84,248 @@ def get_flags_val(arg, builder, local_sym_tab):
)
def get_data_ptr_and_size(data_arg, local_sym_tab, struct_sym_tab):
def simple_string_print(string_value, module, builder, func):
"""Prepare arguments for bpf_printk from a simple string value"""
fmt_str = string_value + "\n\0"
fmt_ptr = _create_format_string_global(fmt_str, func, module, builder)
args = [fmt_ptr, ir.Constant(ir.IntType(32), len(fmt_str))]
return args
def handle_fstring_print(
joined_str,
module,
builder,
func,
local_sym_tab=None,
struct_sym_tab=None,
local_var_metadata=None,
):
"""Handle f-string formatting for bpf_printk emitter."""
fmt_parts = []
exprs = []
for value in joined_str.values:
logger.debug(f"Processing f-string value: {ast.dump(value)}")
if isinstance(value, ast.Constant):
_process_constant_in_fstring(value, fmt_parts, exprs)
elif isinstance(value, ast.FormattedValue):
_process_fval(
value,
fmt_parts,
exprs,
local_sym_tab,
struct_sym_tab,
local_var_metadata,
)
else:
raise NotImplementedError(f"Unsupported f-string value type: {type(value)}")
fmt_str = "".join(fmt_parts)
args = simple_string_print(fmt_str, module, builder, func)
# NOTE: Process expressions (limited to 3 due to BPF constraints)
if len(exprs) > 3:
logger.warning("bpf_printk supports up to 3 args, extra args will be ignored.")
for expr in exprs[:3]:
arg_value = _prepare_expr_args(
expr,
func,
module,
builder,
local_sym_tab,
struct_sym_tab,
local_var_metadata,
)
args.append(arg_value)
return args
def _process_constant_in_fstring(cst, fmt_parts, exprs):
"""Process constant values in f-string."""
if isinstance(cst.value, str):
fmt_parts.append(cst.value)
elif isinstance(cst.value, int):
fmt_parts.append("%lld")
exprs.append(ir.Constant(ir.IntType(64), cst.value))
else:
raise NotImplementedError(
f"Unsupported constant type in f-string: {type(cst.value)}"
)
def _process_fval(
fval, fmt_parts, exprs, local_sym_tab, struct_sym_tab, local_var_metadata
):
"""Process formatted values in f-string."""
logger.debug(f"Processing formatted value: {ast.dump(fval)}")
if isinstance(fval.value, ast.Name):
_process_name_in_fval(fval.value, fmt_parts, exprs, local_sym_tab)
elif isinstance(fval.value, ast.Attribute):
_process_attr_in_fval(
fval.value,
fmt_parts,
exprs,
local_sym_tab,
struct_sym_tab,
local_var_metadata,
)
else:
raise NotImplementedError(
f"Unsupported formatted value in f-string: {type(fval.value)}"
)
def _process_name_in_fval(name_node, fmt_parts, exprs, local_sym_tab):
"""Process name nodes in formatted values."""
if local_sym_tab and name_node.id in local_sym_tab:
_, var_type = local_sym_tab[name_node.id]
_populate_fval(var_type, name_node, fmt_parts, exprs)
def _process_attr_in_fval(
attr_node, fmt_parts, exprs, local_sym_tab, struct_sym_tab, local_var_metadata
):
"""Process attribute nodes in formatted values."""
if (
isinstance(attr_node.value, ast.Name)
and local_sym_tab
and attr_node.value.id in local_sym_tab
):
var_name = attr_node.value.id
field_name = attr_node.attr
if not local_var_metadata or var_name not in local_var_metadata:
raise ValueError(
f"Metadata for '{var_name}' not found in local var metadata"
)
var_type = local_var_metadata[var_name]
if var_type not in struct_sym_tab:
raise ValueError(
f"Struct '{var_type}' for '{var_name}' not in symbol table"
)
struct_info = struct_sym_tab[var_type]
if field_name not in struct_info.fields:
raise ValueError(f"Field '{field_name}' not found in struct '{var_type}'")
field_type = struct_info.field_type(field_name)
_populate_fval(field_type, attr_node, fmt_parts, exprs)
else:
raise NotImplementedError(
"Only simple attribute on local vars is supported in f-strings."
)
def _populate_fval(ftype, node, fmt_parts, exprs):
"""Populate format parts and expressions based on field type."""
if isinstance(ftype, ir.IntType):
# TODO: We print as signed integers only for now
if ftype.width == 64:
fmt_parts.append("%lld")
exprs.append(node)
elif ftype.width == 32:
fmt_parts.append("%d")
exprs.append(node)
else:
raise NotImplementedError(
f"Unsupported integer width in f-string: {ftype.width}"
)
elif ftype == ir.PointerType(ir.IntType(8)):
# NOTE: We assume i8* is a string
fmt_parts.append("%s")
exprs.append(node)
else:
raise NotImplementedError(f"Unsupported field type in f-string: {ftype}")
def _create_format_string_global(fmt_str, func, module, builder):
"""Create a global variable for the format string."""
fmt_name = f"{func.name}____fmt{func._fmt_counter}"
func._fmt_counter += 1
fmt_gvar = ir.GlobalVariable(
module, ir.ArrayType(ir.IntType(8), len(fmt_str)), name=fmt_name
)
fmt_gvar.global_constant = True
fmt_gvar.initializer = ir.Constant(
ir.ArrayType(ir.IntType(8), len(fmt_str)), bytearray(fmt_str.encode("utf8"))
)
fmt_gvar.linkage = "internal"
fmt_gvar.align = 1
return builder.bitcast(fmt_gvar, ir.PointerType())
def _prepare_expr_args(
expr, func, module, builder, local_sym_tab, struct_sym_tab, local_var_metadata
):
"""Evaluate and prepare an expression to use as an arg for bpf_printk."""
val, _ = eval_expr(
func,
module,
builder,
expr,
local_sym_tab,
None,
struct_sym_tab,
local_var_metadata,
)
if val:
if isinstance(val.type, ir.PointerType):
val = builder.ptrtoint(val, ir.IntType(64))
elif isinstance(val.type, ir.IntType):
if val.type.width < 64:
val = builder.sext(val, ir.IntType(64))
else:
logger.warning(
"Only int and ptr supported in bpf_printk args. " "Others default to 0."
)
val = ir.Constant(ir.IntType(64), 0)
return val
else:
logger.warning(
"Failed to evaluate expression for bpf_printk argument. "
"It will be converted to 0."
)
return ir.Constant(ir.IntType(64), 0)
def get_data_ptr_and_size(data_arg, local_sym_tab, struct_sym_tab, local_var_metadata):
"""Extract data pointer and size information for perf event output."""
if isinstance(data_arg, ast.Name):
data_name = data_arg.id
if local_sym_tab and data_name in local_sym_tab:
data_ptr = local_sym_tab[data_name].var
data_ptr = local_sym_tab[data_name][0]
else:
raise ValueError(
f"Data variable {data_name} not found in local symbol table."
)
# Check if data_name is a struct
data_type = local_sym_tab[data_name].metadata
if data_type in struct_sym_tab:
struct_info = struct_sym_tab[data_type]
size_val = ir.Constant(ir.IntType(64), struct_info.size)
return data_ptr, size_val
if local_var_metadata and data_name in local_var_metadata:
data_type = local_var_metadata[data_name]
if data_type in struct_sym_tab:
struct_info = struct_sym_tab[data_type]
size_val = ir.Constant(ir.IntType(64), struct_info.size)
return data_ptr, size_val
else:
raise ValueError(
f"Struct {data_type} for {data_name} not in symbol table."
)
else:
raise ValueError(f"Struct {data_type} for {data_name} not in symbol table.")
raise ValueError(
f"Metadata for variable {data_name} "
"not found in local variable metadata."
)
else:
raise NotImplementedError(
"Only simple object names are supported as data in perf event output."
"Only simple object names are supported " "as data in perf event output."
)
def get_buffer_ptr_and_size(buf_arg, builder, local_sym_tab, struct_sym_tab):
"""Extract buffer pointer and size from either a struct field or variable."""
# Case 1: Struct field (obj.field)
if isinstance(buf_arg, ast.Attribute):
if not isinstance(buf_arg.value, ast.Name):
raise ValueError(
"Only simple struct field access supported (e.g., obj.field)"
)
struct_name = buf_arg.value.id
field_name = buf_arg.attr
# Lookup struct
if not local_sym_tab or struct_name not in local_sym_tab:
raise ValueError(f"Struct '{struct_name}' not found")
struct_type = local_sym_tab[struct_name].metadata
if not struct_sym_tab or struct_type not in struct_sym_tab:
raise ValueError(f"Struct type '{struct_type}' not found")
struct_info = struct_sym_tab[struct_type]
# Get field pointer and type
struct_ptr = local_sym_tab[struct_name].var
field_ptr = struct_info.gep(builder, struct_ptr, field_name)
field_type = struct_info.field_type(field_name)
if not isinstance(field_type, ir.ArrayType):
raise ValueError(f"Field '{field_name}' must be an array type")
return field_ptr, field_type.count
# Case 2: Variable name
elif isinstance(buf_arg, ast.Name):
var_name = buf_arg.id
if not local_sym_tab or var_name not in local_sym_tab:
raise ValueError(f"Variable '{var_name}' not found")
var_ptr = local_sym_tab[var_name].var
var_type = local_sym_tab[var_name].ir_type
if not isinstance(var_type, ir.ArrayType):
raise ValueError(f"Variable '{var_name}' must be an array type")
return var_ptr, var_type.count
else:
raise ValueError(
"comm expects either a struct field (obj.field) or variable name"
)
def get_char_array_ptr_and_size(
buf_arg, builder, local_sym_tab, struct_sym_tab, func=None
):
"""Get pointer to char array and its size."""
# Struct field: obj.field
if isinstance(buf_arg, ast.Attribute) and isinstance(buf_arg.value, ast.Name):
var_name = buf_arg.value.id
field_name = buf_arg.attr
if not (local_sym_tab and var_name in local_sym_tab):
raise ValueError(f"Variable '{var_name}' not found")
struct_ptr, struct_type, struct_metadata = local_sym_tab[var_name]
if not (struct_sym_tab and struct_metadata in struct_sym_tab):
raise ValueError(f"Struct type '{struct_metadata}' not found")
struct_info = struct_sym_tab[struct_metadata]
if field_name not in struct_info.fields:
raise ValueError(f"Field '{field_name}' not found")
field_type = struct_info.field_type(field_name)
if not _is_char_array(field_type):
logger.info(
"Field is not a char array, falling back to int or ptr detection"
)
return None, 0
# Check if char array
if not (
isinstance(field_type, ir.ArrayType)
and isinstance(field_type.element, ir.IntType)
and field_type.element.width == 8
):
logger.warning("Field is not a char array")
return None, 0
field_ptr, _ = access_struct_field(
builder,
struct_ptr,
struct_type,
struct_metadata,
field_name,
struct_sym_tab,
func,
)
# GEP to first element: [N x i8]* -> i8*
buf_ptr = builder.gep(
field_ptr,
[ir.Constant(ir.IntType(32), 0), ir.Constant(ir.IntType(32), 0)],
inbounds=True,
)
return buf_ptr, field_type.count
elif isinstance(buf_arg, ast.Name):
# NOTE: We shouldn't be doing this as we can't get size info
var_name = buf_arg.id
if not (local_sym_tab and var_name in local_sym_tab):
raise ValueError(f"Variable '{var_name}' not found")
var_ptr = local_sym_tab[var_name].var
var_type = local_sym_tab[var_name].ir_type
if not isinstance(var_type, ir.PointerType) or not isinstance(
var_type.pointee, ir.IntType(8)
):
raise ValueError("Expected str ptr variable")
return var_ptr, 256 # Size unknown for str ptr, using 256 as default
else:
raise ValueError("Expected struct field or variable name")
def _is_char_array(ir_type):
"""Check if IR type is [N x i8]."""
return (
isinstance(ir_type, ir.ArrayType)
and isinstance(ir_type.element, ir.IntType)
and ir_type.element.width == 8
)
def get_ptr_from_arg(
arg, func, module, builder, local_sym_tab, map_sym_tab, struct_sym_tab
):
"""Evaluate argument and return pointer value"""
result = eval_expr(
func, module, builder, arg, local_sym_tab, map_sym_tab, struct_sym_tab
)
if not result:
raise ValueError("Failed to evaluate argument")
val, val_type = result
if not isinstance(val_type, ir.PointerType):
raise ValueError(f"Expected pointer type, got {val_type}")
return val, val_type
def get_int_value_from_arg(
arg, func, module, builder, local_sym_tab, map_sym_tab, struct_sym_tab
):
"""Evaluate argument and return integer value"""
result = eval_expr(
func, module, builder, arg, local_sym_tab, map_sym_tab, struct_sym_tab
)
if not result:
raise ValueError("Failed to evaluate argument")
val, val_type = result
if not isinstance(val_type, ir.IntType):
raise ValueError(f"Expected integer type, got {val_type}")
return val

View File

@ -2,68 +2,18 @@ import ctypes
def ktime():
"""get current ktime"""
return ctypes.c_int64(0)
def pid():
"""get current process id"""
return ctypes.c_int32(0)
def deref(ptr):
"""dereference a pointer"""
"dereference a pointer"
result = ctypes.cast(ptr, ctypes.POINTER(ctypes.c_void_p)).contents.value
return result if result is not None else 0
def comm(buf):
"""get current process command name"""
return ctypes.c_int64(0)
def probe_read_str(dst, src):
"""Safely read a null-terminated string from kernel memory"""
return ctypes.c_int64(0)
def random():
"""get a pseudorandom u32 number"""
return ctypes.c_int32(0)
def probe_read(dst, size, src):
"""Safely read data from kernel memory"""
return ctypes.c_int64(0)
def smp_processor_id():
"""get the current CPU id"""
return ctypes.c_int32(0)
def uid():
"""get current user id"""
return ctypes.c_int32(0)
def skb_store_bytes(offset, from_buf, size, flags=0):
"""store bytes into a socket buffer"""
return ctypes.c_int64(0)
def get_stack(buf, flags=0):
"""get the current stack trace"""
return ctypes.c_int64(0)
def get_current_cgroup_id():
"""Get the current cgroup ID"""
return ctypes.c_int64(0)
XDP_ABORTED = ctypes.c_int64(0)
XDP_DROP = ctypes.c_int64(1)
XDP_PASS = ctypes.c_int64(2)
XDP_TX = ctypes.c_int64(3)
XDP_REDIRECT = ctypes.c_int64(4)

View File

@ -1,272 +0,0 @@
import ast
import logging
from llvmlite import ir
from pythonbpf.expr import eval_expr, get_base_type_and_depth, deref_to_depth
from pythonbpf.expr.vmlinux_registry import VmlinuxHandlerRegistry
from pythonbpf.helper.helper_utils import get_char_array_ptr_and_size
logger = logging.getLogger(__name__)
def simple_string_print(string_value, module, builder, func):
"""Prepare arguments for bpf_printk from a simple string value"""
fmt_str = string_value + "\n\0"
fmt_ptr = _create_format_string_global(fmt_str, func, module, builder)
args = [fmt_ptr, ir.Constant(ir.IntType(32), len(fmt_str))]
return args
def handle_fstring_print(
joined_str,
module,
builder,
func,
local_sym_tab=None,
struct_sym_tab=None,
):
"""Handle f-string formatting for bpf_printk emitter."""
fmt_parts = []
exprs = []
for value in joined_str.values:
logger.debug(f"Processing f-string value: {ast.dump(value)}")
if isinstance(value, ast.Constant):
_process_constant_in_fstring(value, fmt_parts, exprs)
elif isinstance(value, ast.FormattedValue):
_process_fval(
value,
fmt_parts,
exprs,
local_sym_tab,
struct_sym_tab,
)
else:
raise NotImplementedError(f"Unsupported f-string value type: {type(value)}")
fmt_str = "".join(fmt_parts)
args = simple_string_print(fmt_str, module, builder, func)
# NOTE: Process expressions (limited to 3 due to BPF constraints)
if len(exprs) > 3:
logger.warning("bpf_printk supports up to 3 args, extra args will be ignored.")
for expr in exprs[:3]:
arg_value = _prepare_expr_args(
expr,
func,
module,
builder,
local_sym_tab,
struct_sym_tab,
)
args.append(arg_value)
return args
# ============================================================================
# Internal Helpers
# ============================================================================
def _process_constant_in_fstring(cst, fmt_parts, exprs):
"""Process constant values in f-string."""
if isinstance(cst.value, str):
fmt_parts.append(cst.value)
elif isinstance(cst.value, int):
fmt_parts.append("%lld")
exprs.append(ir.Constant(ir.IntType(64), cst.value))
else:
raise NotImplementedError(
f"Unsupported constant type in f-string: {type(cst.value)}"
)
def _process_fval(fval, fmt_parts, exprs, local_sym_tab, struct_sym_tab):
"""Process formatted values in f-string."""
logger.debug(f"Processing formatted value: {ast.dump(fval)}")
if isinstance(fval.value, ast.Name):
_process_name_in_fval(fval.value, fmt_parts, exprs, local_sym_tab)
elif isinstance(fval.value, ast.Attribute):
_process_attr_in_fval(
fval.value,
fmt_parts,
exprs,
local_sym_tab,
struct_sym_tab,
)
else:
raise NotImplementedError(
f"Unsupported formatted value in f-string: {type(fval.value)}"
)
def _process_name_in_fval(name_node, fmt_parts, exprs, local_sym_tab):
"""Process name nodes in formatted values."""
if local_sym_tab and name_node.id in local_sym_tab:
_, var_type, tmp = local_sym_tab[name_node.id]
_populate_fval(var_type, name_node, fmt_parts, exprs)
else:
# Try to resolve through vmlinux registry if not in local symbol table
result = VmlinuxHandlerRegistry.handle_name(name_node.id)
if result:
val, var_type = result
_populate_fval(var_type, name_node, fmt_parts, exprs)
else:
raise ValueError(
f"Variable '{name_node.id}' not found in symbol table or vmlinux"
)
def _process_attr_in_fval(attr_node, fmt_parts, exprs, local_sym_tab, struct_sym_tab):
"""Process attribute nodes in formatted values."""
if (
isinstance(attr_node.value, ast.Name)
and local_sym_tab
and attr_node.value.id in local_sym_tab
):
var_name = attr_node.value.id
field_name = attr_node.attr
var_type = local_sym_tab[var_name].metadata
if var_type not in struct_sym_tab:
raise ValueError(
f"Struct '{var_type}' for '{var_name}' not in symbol table"
)
struct_info = struct_sym_tab[var_type]
if field_name not in struct_info.fields:
raise ValueError(f"Field '{field_name}' not found in struct '{var_type}'")
field_type = struct_info.field_type(field_name)
_populate_fval(field_type, attr_node, fmt_parts, exprs)
else:
raise NotImplementedError(
"Only simple attribute on local vars is supported in f-strings."
)
def _populate_fval(ftype, node, fmt_parts, exprs):
"""Populate format parts and expressions based on field type."""
if isinstance(ftype, ir.IntType):
# TODO: We print as signed integers only for now
if ftype.width == 64:
fmt_parts.append("%lld")
exprs.append(node)
elif ftype.width == 32:
fmt_parts.append("%d")
exprs.append(node)
else:
raise NotImplementedError(
f"Unsupported integer width in f-string: {ftype.width}"
)
elif isinstance(ftype, ir.PointerType):
target, depth = get_base_type_and_depth(ftype)
if isinstance(target, ir.IntType):
if target.width == 64:
fmt_parts.append("%lld")
exprs.append(node)
elif target.width == 32:
fmt_parts.append("%d")
exprs.append(node)
elif target.width == 8 and depth == 1:
# NOTE: Assume i8* is a string
fmt_parts.append("%s")
exprs.append(node)
else:
raise NotImplementedError(
f"Unsupported pointer target type in f-string: {target}"
)
else:
raise NotImplementedError(
f"Unsupported pointer target type in f-string: {target}"
)
elif isinstance(ftype, ir.ArrayType):
if isinstance(ftype.element, ir.IntType) and ftype.element.width == 8:
# Char array
fmt_parts.append("%s")
exprs.append(node)
else:
raise NotImplementedError(
f"Unsupported array element type in f-string: {ftype.element}"
)
else:
raise NotImplementedError(f"Unsupported field type in f-string: {ftype}")
def _create_format_string_global(fmt_str, func, module, builder):
"""Create a global variable for the format string."""
fmt_name = f"{func.name}____fmt{func._fmt_counter}"
func._fmt_counter += 1
fmt_gvar = ir.GlobalVariable(
module, ir.ArrayType(ir.IntType(8), len(fmt_str)), name=fmt_name
)
fmt_gvar.global_constant = True
fmt_gvar.initializer = ir.Constant(
ir.ArrayType(ir.IntType(8), len(fmt_str)), bytearray(fmt_str.encode("utf8"))
)
fmt_gvar.linkage = "internal"
fmt_gvar.align = 1
return builder.bitcast(fmt_gvar, ir.PointerType())
def _prepare_expr_args(expr, func, module, builder, local_sym_tab, struct_sym_tab):
"""Evaluate and prepare an expression to use as an arg for bpf_printk."""
# Special case: struct field char array needs pointer to first element
if isinstance(expr, ast.Attribute):
char_array_ptr, _ = get_char_array_ptr_and_size(
expr, builder, local_sym_tab, struct_sym_tab, func
)
if char_array_ptr:
return char_array_ptr
# Regular expression evaluation
val, _ = eval_expr(func, module, builder, expr, local_sym_tab, None, struct_sym_tab)
if not val:
logger.warning("Failed to evaluate expression for bpf_printk, defaulting to 0")
return ir.Constant(ir.IntType(64), 0)
# Convert value to bpf_printk compatible type
if isinstance(val.type, ir.PointerType):
return _handle_pointer_arg(val, func, builder)
elif isinstance(val.type, ir.IntType):
return _handle_int_arg(val, builder)
else:
logger.warning(f"Unsupported type {val.type} in bpf_printk, defaulting to 0")
return ir.Constant(ir.IntType(64), 0)
def _handle_pointer_arg(val, func, builder):
"""Convert pointer type for bpf_printk."""
target, depth = get_base_type_and_depth(val.type)
if not isinstance(target, ir.IntType):
logger.warning("Only int pointers supported in bpf_printk, defaulting to 0")
return ir.Constant(ir.IntType(64), 0)
# i8* is string - use as-is
if target.width == 8 and depth == 1:
return val
# Integer pointers: dereference and sign-extend to i64
if target.width >= 32:
val = deref_to_depth(func, builder, val, depth)
return builder.sext(val, ir.IntType(64))
logger.warning("Unsupported pointer width in bpf_printk, defaulting to 0")
return ir.Constant(ir.IntType(64), 0)
def _handle_int_arg(val, builder):
"""Convert integer type for bpf_printk (sign-extend to i64)."""
if val.type.width < 64:
return builder.sext(val, ir.IntType(64))
return val

View File

@ -1,9 +1,5 @@
from llvmlite import ir
import ast
from logging import Logger
import logging
logger: Logger = logging.getLogger(__name__)
def emit_license(module: ir.Module, license_str: str):
@ -45,9 +41,9 @@ def license_processing(tree, module):
emit_license(module, node.body[0].value.value)
return "LICENSE"
else:
logger.info("ERROR: LICENSE() must return a string literal")
print("ERROR: LICENSE() must return a string literal")
return None
else:
logger.info("ERROR: LICENSE already defined")
print("ERROR: LICENSE already defined")
return None
return None

View File

@ -1,15 +0,0 @@
import llvmlite.ir as ir
from dataclasses import dataclass
from typing import Any
@dataclass
class LocalSymbol:
var: ir.AllocaInstr
ir_type: ir.Type
metadata: Any = None
def __iter__(self):
yield self.var
yield self.ir_type
yield self.metadata

View File

@ -1,5 +1,4 @@
from .maps import HashMap, PerfEventArray, RingBuffer
from .maps import HashMap, PerfEventArray, RingBuf
from .maps_pass import maps_proc
from .map_types import BPFMapType
__all__ = ["HashMap", "PerfEventArray", "maps_proc", "RingBuffer", "BPFMapType"]
__all__ = ["HashMap", "PerfEventArray", "maps_proc", "RingBuf"]

View File

@ -1,171 +0,0 @@
import logging
from llvmlite import ir
from pythonbpf.debuginfo import DebugInfoGenerator
from .map_types import BPFMapType
logger: logging.Logger = logging.getLogger(__name__)
def create_map_debug_info(module, map_global, map_name, map_params, structs_sym_tab):
"""Generate debug info metadata for BPF maps HASH and PERF_EVENT_ARRAY"""
generator = DebugInfoGenerator(module)
logger.info(f"Creating debug info for map {map_name} with params {map_params}")
uint_type = generator.get_uint32_type()
array_type = generator.create_array_type(
uint_type, map_params.get("type", BPFMapType.UNSPEC).value
)
type_ptr = generator.create_pointer_type(array_type, 64)
key_ptr = generator.create_pointer_type(
array_type
if "key_size" in map_params
else _get_key_val_dbg_type(map_params.get("key"), generator, structs_sym_tab),
64,
)
value_ptr = generator.create_pointer_type(
array_type
if "value_size" in map_params
else _get_key_val_dbg_type(map_params.get("value"), generator, structs_sym_tab),
64,
)
elements_arr = []
# Create struct members
# scope field does not appear for some reason
cnt = 0
for elem in map_params:
if elem == "max_entries":
continue
if elem == "type":
ptr = type_ptr
elif "key" in elem:
ptr = key_ptr
else:
ptr = value_ptr
# TODO: the best way to do this is not 64, but get the size each time. this will not work for structs.
member = generator.create_struct_member(elem, ptr, cnt * 64)
elements_arr.append(member)
cnt += 1
if "max_entries" in map_params:
max_entries_array = generator.create_array_type(
uint_type, map_params["max_entries"]
)
max_entries_ptr = generator.create_pointer_type(max_entries_array, 64)
max_entries_member = generator.create_struct_member(
"max_entries", max_entries_ptr, cnt * 64
)
elements_arr.append(max_entries_member)
# Create the struct type
struct_type = generator.create_struct_type(
elements_arr, 64 * len(elements_arr), is_distinct=True
)
# Create global variable debug info
global_var = generator.create_global_var_debug_info(
map_name, struct_type, is_local=False
)
# Attach debug info to the global variable
map_global.set_metadata("dbg", global_var)
return global_var
# TODO: This should not be exposed outside of the module.
# Ideally we should expose a single create_map_debug_info function that handles all map types.
# We can probably use a registry pattern to register different map types and their debug info generators.
# map_params["type"] will be used to determine which generator to use.
def create_ringbuf_debug_info(
module, map_global, map_name, map_params, structs_sym_tab
):
"""Generate debug information metadata for BPF RINGBUF map"""
generator = DebugInfoGenerator(module)
int_type = generator.get_int32_type()
type_array = generator.create_array_type(
int_type, map_params.get("type", BPFMapType.RINGBUF).value
)
type_ptr = generator.create_pointer_type(type_array, 64)
type_member = generator.create_struct_member("type", type_ptr, 0)
max_entries_array = generator.create_array_type(int_type, map_params["max_entries"])
max_entries_ptr = generator.create_pointer_type(max_entries_array, 64)
max_entries_member = generator.create_struct_member(
"max_entries", max_entries_ptr, 64
)
elements_arr = [type_member, max_entries_member]
struct_type = generator.create_struct_type(elements_arr, 128, is_distinct=True)
global_var = generator.create_global_var_debug_info(
map_name, struct_type, is_local=False
)
map_global.set_metadata("dbg", global_var)
return global_var
def _get_key_val_dbg_type(name, generator, structs_sym_tab):
"""Get the debug type for key/value based on type object"""
if not name:
logger.warn("No name provided for key/value type, defaulting to uint64")
return generator.get_uint64_type()
type_obj = structs_sym_tab.get(name)
if type_obj:
logger.info(f"Found struct named {name}, generating debug type")
return _get_struct_debug_type(type_obj, generator, structs_sym_tab)
# Fallback to basic types
logger.info(f"No struct named {name}, falling back to basic type")
# NOTE: Only handling int and long for now
if name in ["c_int32", "c_uint32"]:
return generator.get_uint32_type()
# Default fallback for now
return generator.get_uint64_type()
def _get_struct_debug_type(struct_obj, generator, structs_sym_tab):
"""Recursively create debug type for struct"""
elements_arr = []
for fld in struct_obj.fields.keys():
fld_type = struct_obj.field_type(fld)
if isinstance(fld_type, ir.IntType):
if fld_type.width == 32:
fld_dbg_type = generator.get_uint32_type()
else:
# NOTE: Assuming 64-bit for all other int types
fld_dbg_type = generator.get_uint64_type()
elif isinstance(fld_type, ir.ArrayType):
# NOTE: Array types have u8 elements only for now
# Debug info generation should fail for other types
elem_type = fld_type.element
if isinstance(elem_type, ir.IntType) and elem_type.width == 8:
char_type = generator.get_uint8_type()
fld_dbg_type = generator.create_array_type(char_type, fld_type.count)
else:
logger.warning(
f"Array element type {str(elem_type)} not supported for debug info, skipping"
)
continue
else:
# NOTE: Only handling int and char arrays for now
logger.warning(
f"Field type {str(fld_type)} not supported for debug info, skipping"
)
continue
member = generator.create_struct_member(
fld, fld_dbg_type, struct_obj.field_size(fld)
)
elements_arr.append(member)
struct_type = generator.create_struct_type(
elements_arr, struct_obj.size * 8, is_distinct=True
)
return struct_type

View File

@ -1,39 +0,0 @@
from enum import Enum
class BPFMapType(Enum):
UNSPEC = 0
HASH = 1
ARRAY = 2
PROG_ARRAY = 3
PERF_EVENT_ARRAY = 4
PERCPU_HASH = 5
PERCPU_ARRAY = 6
STACK_TRACE = 7
CGROUP_ARRAY = 8
LRU_HASH = 9
LRU_PERCPU_HASH = 10
LPM_TRIE = 11
ARRAY_OF_MAPS = 12
HASH_OF_MAPS = 13
DEVMAP = 14
SOCKMAP = 15
CPUMAP = 16
XSKMAP = 17
SOCKHASH = 18
CGROUP_STORAGE_DEPRECATED = 19
CGROUP_STORAGE = 19
REUSEPORT_SOCKARRAY = 20
PERCPU_CGROUP_STORAGE_DEPRECATED = 21
PERCPU_CGROUP_STORAGE = 21
QUEUE = 22
STACK = 23
SK_STORAGE = 24
DEVMAP_HASH = 25
STRUCT_OPS = 26
RINGBUF = 27
INODE_STORAGE = 28
TASK_STORAGE = 29
BLOOM_FILTER = 30
USER_RINGBUF = 31
CGRP_STORAGE = 32

View File

@ -36,14 +36,11 @@ class PerfEventArray:
pass # Placeholder for output method
class RingBuffer:
class RingBuf:
def __init__(self, max_entries):
self.max_entries = max_entries
def output(self, data, flags=0):
pass
def reserve(self, size: int):
def reserve(self, size: int, flags=0):
if size > self.max_entries:
raise ValueError("size cannot be greater than set maximum entries")
return 0
@ -51,7 +48,4 @@ class RingBuffer:
def submit(self, data, flags=0):
pass
def discard(self, data, flags=0):
pass
# add discard, output and also give names to flags and stuff

View File

@ -1,26 +1,21 @@
import ast
import logging
from logging import Logger
from llvmlite import ir
from .maps_utils import MapProcessorRegistry, MapSymbol
from .map_types import BPFMapType
from .map_debug_info import create_map_debug_info, create_ringbuf_debug_info
from pythonbpf.expr.vmlinux_registry import VmlinuxHandlerRegistry
from enum import Enum
from .maps_utils import MapProcessorRegistry
from ..debuginfo import DebugInfoGenerator
import logging
logger: Logger = logging.getLogger(__name__)
def maps_proc(tree, module, chunks, structs_sym_tab):
def maps_proc(tree, module, chunks):
"""Process all functions decorated with @map to find BPF maps"""
map_sym_tab = {}
for func_node in chunks:
if is_map(func_node):
logger.info(f"Found BPF map: {func_node.name}")
map_sym_tab[func_node.name] = process_bpf_map(
func_node, module, structs_sym_tab
)
map_sym_tab[func_node.name] = process_bpf_map(func_node, module)
return map_sym_tab
@ -31,6 +26,44 @@ def is_map(func_node):
)
class BPFMapType(Enum):
UNSPEC = 0
HASH = 1
ARRAY = 2
PROG_ARRAY = 3
PERF_EVENT_ARRAY = 4
PERCPU_HASH = 5
PERCPU_ARRAY = 6
STACK_TRACE = 7
CGROUP_ARRAY = 8
LRU_HASH = 9
LRU_PERCPU_HASH = 10
LPM_TRIE = 11
ARRAY_OF_MAPS = 12
HASH_OF_MAPS = 13
DEVMAP = 14
SOCKMAP = 15
CPUMAP = 16
XSKMAP = 17
SOCKHASH = 18
CGROUP_STORAGE_DEPRECATED = 19
CGROUP_STORAGE = 19
REUSEPORT_SOCKARRAY = 20
PERCPU_CGROUP_STORAGE_DEPRECATED = 21
PERCPU_CGROUP_STORAGE = 21
QUEUE = 22
STACK = 23
SK_STORAGE = 24
DEVMAP_HASH = 25
STRUCT_OPS = 26
RINGBUF = 27
INODE_STORAGE = 28
TASK_STORAGE = 29
BLOOM_FILTER = 30
USER_RINGBUF = 31
CGRP_STORAGE = 32
def create_bpf_map(module, map_name, map_params):
"""Create a BPF map in the module with given parameters and debug info"""
@ -48,98 +81,183 @@ def create_bpf_map(module, map_name, map_params):
map_global.align = 8
logger.info(f"Created BPF map: {map_name} with params {map_params}")
return MapSymbol(type=map_params["type"], sym=map_global, params=map_params)
return map_global
def _parse_map_params(rval, expected_args=None):
"""Parse map parameters from call arguments and keywords."""
def create_map_debug_info(module, map_global, map_name, map_params):
"""Generate debug information metadata for BPF maps HASH and PERF_EVENT_ARRAY"""
generator = DebugInfoGenerator(module)
params = {}
handler = VmlinuxHandlerRegistry.get_handler()
# Parse positional arguments
if expected_args:
for i, arg_name in enumerate(expected_args):
if i < len(rval.args):
arg = rval.args[i]
if isinstance(arg, ast.Name):
result = _get_vmlinux_enum(handler, arg.id)
params[arg_name] = result if result is not None else arg.id
elif isinstance(arg, ast.Constant):
params[arg_name] = arg.value
uint_type = generator.get_uint32_type()
ulong_type = generator.get_uint64_type()
array_type = generator.create_array_type(
uint_type, map_params.get("type", BPFMapType.UNSPEC).value
)
type_ptr = generator.create_pointer_type(array_type, 64)
key_ptr = generator.create_pointer_type(
array_type if "key_size" in map_params else ulong_type, 64
)
value_ptr = generator.create_pointer_type(
array_type if "value_size" in map_params else ulong_type, 64
)
# Parse keyword arguments (override positional)
for keyword in rval.keywords:
if isinstance(keyword.value, ast.Name):
name = keyword.value.id
result = _get_vmlinux_enum(handler, name)
params[keyword.arg] = result if result is not None else name
elif isinstance(keyword.value, ast.Constant):
params[keyword.arg] = keyword.value.value
elements_arr = []
return params
# Create struct members
# scope field does not appear for some reason
cnt = 0
for elem in map_params:
if elem == "max_entries":
continue
if elem == "type":
ptr = type_ptr
elif "key" in elem:
ptr = key_ptr
else:
ptr = value_ptr
# TODO: the best way to do this is not 64, but get the size each time. this will not work for structs.
member = generator.create_struct_member(elem, ptr, cnt * 64)
elements_arr.append(member)
cnt += 1
if "max_entries" in map_params:
max_entries_array = generator.create_array_type(
uint_type, map_params["max_entries"]
)
max_entries_ptr = generator.create_pointer_type(max_entries_array, 64)
max_entries_member = generator.create_struct_member(
"max_entries", max_entries_ptr, cnt * 64
)
elements_arr.append(max_entries_member)
# Create the struct type
struct_type = generator.create_struct_type(
elements_arr, 64 * len(elements_arr), is_distinct=True
)
# Create global variable debug info
global_var = generator.create_global_var_debug_info(
map_name, struct_type, is_local=False
)
# Attach debug info to the global variable
map_global.set_metadata("dbg", global_var)
return global_var
def _get_vmlinux_enum(handler, name):
if handler and handler.is_vmlinux_enum(name):
return handler.get_vmlinux_enum_value(name)
def create_ringbuf_debug_info(module, map_global, map_name, map_params):
"""Generate debug information metadata for BPF RINGBUF map"""
generator = DebugInfoGenerator(module)
int_type = generator.get_int32_type()
type_array = generator.create_array_type(
int_type, map_params.get("type", BPFMapType.RINGBUF).value
)
type_ptr = generator.create_pointer_type(type_array, 64)
type_member = generator.create_struct_member("type", type_ptr, 0)
max_entries_array = generator.create_array_type(int_type, map_params["max_entries"])
max_entries_ptr = generator.create_pointer_type(max_entries_array, 64)
max_entries_member = generator.create_struct_member(
"max_entries", max_entries_ptr, 64
)
elements_arr = [type_member, max_entries_member]
struct_type = generator.create_struct_type(elements_arr, 128, is_distinct=True)
global_var = generator.create_global_var_debug_info(
map_name, struct_type, is_local=False
)
map_global.set_metadata("dbg", global_var)
return global_var
@MapProcessorRegistry.register("RingBuffer")
def process_ringbuf_map(map_name, rval, module, structs_sym_tab):
@MapProcessorRegistry.register("RingBuf")
def process_ringbuf_map(map_name, rval, module):
"""Process a BPF_RINGBUF map declaration"""
logger.info(f"Processing Ringbuf: {map_name}")
map_params = _parse_map_params(rval, expected_args=["max_entries"])
map_params["type"] = BPFMapType.RINGBUF
map_params = {"type": BPFMapType.RINGBUF}
# NOTE: constraints borrowed from https://docs.ebpf.io/linux/map-type/BPF_MAP_TYPE_RINGBUF/
max_entries = map_params.get("max_entries")
if (
not isinstance(max_entries, int)
or max_entries < 4096
or (max_entries & (max_entries - 1)) != 0
):
raise ValueError(
"Ringbuf max_entries must be a power of two greater than or equal to the page size (4096)"
)
# Parse max_entries if present
if len(rval.args) >= 1 and isinstance(rval.args[0], ast.Constant):
const_val = rval.args[0].value
if isinstance(const_val, int):
map_params["max_entries"] = const_val
for keyword in rval.keywords:
if keyword.arg == "max_entries" and isinstance(keyword.value, ast.Constant):
const_val = keyword.value.value
if isinstance(const_val, int):
map_params["max_entries"] = const_val
logger.info(f"Ringbuf map parameters: {map_params}")
map_global = create_bpf_map(module, map_name, map_params)
create_ringbuf_debug_info(
module, map_global.sym, map_name, map_params, structs_sym_tab
)
create_ringbuf_debug_info(module, map_global, map_name, map_params)
return map_global
@MapProcessorRegistry.register("HashMap")
def process_hash_map(map_name, rval, module, structs_sym_tab):
def process_hash_map(map_name, rval, module):
"""Process a BPF_HASH map declaration"""
logger.info(f"Processing HashMap: {map_name}")
map_params = _parse_map_params(rval, expected_args=["key", "value", "max_entries"])
map_params["type"] = BPFMapType.HASH
map_params = {"type": BPFMapType.HASH}
# Assuming order: key_type, value_type, max_entries
if len(rval.args) >= 1 and isinstance(rval.args[0], ast.Name):
map_params["key"] = rval.args[0].id
if len(rval.args) >= 2 and isinstance(rval.args[1], ast.Name):
map_params["value"] = rval.args[1].id
if len(rval.args) >= 3 and isinstance(rval.args[2], ast.Constant):
const_val = rval.args[2].value
if isinstance(const_val, (int, str)): # safe check
map_params["max_entries"] = const_val
for keyword in rval.keywords:
if keyword.arg == "key" and isinstance(keyword.value, ast.Name):
map_params["key"] = keyword.value.id
elif keyword.arg == "value" and isinstance(keyword.value, ast.Name):
map_params["value"] = keyword.value.id
elif keyword.arg == "max_entries" and isinstance(keyword.value, ast.Constant):
const_val = keyword.value.value
if isinstance(const_val, (int, str)):
map_params["max_entries"] = const_val
logger.info(f"Map parameters: {map_params}")
map_global = create_bpf_map(module, map_name, map_params)
# Generate debug info for BTF
create_map_debug_info(module, map_global.sym, map_name, map_params, structs_sym_tab)
create_map_debug_info(module, map_global, map_name, map_params)
return map_global
@MapProcessorRegistry.register("PerfEventArray")
def process_perf_event_map(map_name, rval, module, structs_sym_tab):
def process_perf_event_map(map_name, rval, module):
"""Process a BPF_PERF_EVENT_ARRAY map declaration"""
logger.info(f"Processing PerfEventArray: {map_name}")
map_params = _parse_map_params(rval, expected_args=["key_size", "value_size"])
map_params["type"] = BPFMapType.PERF_EVENT_ARRAY
map_params = {"type": BPFMapType.PERF_EVENT_ARRAY}
if len(rval.args) >= 1 and isinstance(rval.args[0], ast.Name):
map_params["key_size"] = rval.args[0].id
if len(rval.args) >= 2 and isinstance(rval.args[1], ast.Name):
map_params["value_size"] = rval.args[1].id
for keyword in rval.keywords:
if keyword.arg == "key_size" and isinstance(keyword.value, ast.Name):
map_params["key_size"] = keyword.value.id
elif keyword.arg == "value_size" and isinstance(keyword.value, ast.Name):
map_params["value_size"] = keyword.value.id
logger.info(f"Map parameters: {map_params}")
map_global = create_bpf_map(module, map_name, map_params)
# Generate debug info for BTF
create_map_debug_info(module, map_global.sym, map_name, map_params, structs_sym_tab)
create_map_debug_info(module, map_global, map_name, map_params)
return map_global
def process_bpf_map(func_node, module, structs_sym_tab):
def process_bpf_map(func_node, module):
"""Process a BPF map (a function decorated with @map)"""
map_name = func_node.name
logger.info(f"Processing BPF map: {map_name}")
@ -158,9 +276,11 @@ def process_bpf_map(func_node, module, structs_sym_tab):
if isinstance(rval, ast.Call) and isinstance(rval.func, ast.Name):
handler = MapProcessorRegistry.get_processor(rval.func.id)
if handler:
return handler(map_name, rval, module, structs_sym_tab)
return handler(map_name, rval, module)
else:
logger.warning(f"Unknown map type {rval.func.id}, defaulting to HashMap")
logger.warning(
f"Unknown map type " f"{rval.func.id}, defaulting to HashMap"
)
return process_hash_map(map_name, rval, module)
else:
raise ValueError("Function under @map must return a map")

View File

@ -1,17 +1,5 @@
from collections.abc import Callable
from dataclasses import dataclass
from llvmlite import ir
from typing import Any
from .map_types import BPFMapType
@dataclass
class MapSymbol:
"""Class representing a symbol on the map"""
type: BPFMapType
sym: ir.GlobalVariable
params: dict[str, Any] | None = None
class MapProcessorRegistry:

View File

@ -19,7 +19,7 @@ def structs_proc(tree, module, chunks):
structs_sym_tab = {}
for cls_node in chunks:
if is_bpf_struct(cls_node):
logger.info(f"Found BPF struct: {cls_node.name}")
print(f"Found BPF struct: {cls_node.name}")
struct_info = process_bpf_struct(cls_node, module)
structs_sym_tab[cls_node.name] = struct_info
return structs_sym_tab

View File

@ -1,37 +1,24 @@
from llvmlite import ir
# TODO: THIS IS NOT SUPPOSED TO MATCH STRINGS :skull:
mapping = {
"c_int8": ir.IntType(8),
"c_uint8": ir.IntType(8),
"c_int16": ir.IntType(16),
"c_uint16": ir.IntType(16),
"c_int32": ir.IntType(32),
"c_uint32": ir.IntType(32),
"c_int64": ir.IntType(64),
"c_uint64": ir.IntType(64),
"c_float": ir.FloatType(),
"c_double": ir.DoubleType(),
"c_void_p": ir.IntType(64),
"c_long": ir.IntType(64),
"c_ulong": ir.IntType(64),
"c_longlong": ir.IntType(64),
"c_uint": ir.IntType(32),
"c_int": ir.IntType(32),
"c_ushort": ir.IntType(16),
"c_short": ir.IntType(16),
"c_ubyte": ir.IntType(8),
"c_byte": ir.IntType(8),
# Not so sure about this one
"str": ir.PointerType(ir.IntType(8)),
}
def ctypes_to_ir(ctype: str):
mapping = {
"c_int8": ir.IntType(8),
"c_uint8": ir.IntType(8),
"c_int16": ir.IntType(16),
"c_uint16": ir.IntType(16),
"c_int32": ir.IntType(32),
"c_uint32": ir.IntType(32),
"c_int64": ir.IntType(64),
"c_uint64": ir.IntType(64),
"c_float": ir.FloatType(),
"c_double": ir.DoubleType(),
"c_void_p": ir.IntType(64),
# Not so sure about this one
"str": ir.PointerType(ir.IntType(8)),
}
if ctype in mapping:
return mapping[ctype]
raise NotImplementedError(f"No mapping for {ctype}")
def is_ctypes(ctype: str) -> bool:
return ctype in mapping

View File

@ -1,58 +0,0 @@
import subprocess
def trace_pipe():
"""Util to read from the trace pipe."""
try:
subprocess.run(["cat", "/sys/kernel/tracing/trace_pipe"])
except KeyboardInterrupt:
print("Tracing stopped.")
except (FileNotFoundError, PermissionError) as e:
print(f"Error accessing trace_pipe: {e}. Try running as root.")
def trace_fields():
"""Parse one line from trace_pipe into fields."""
with open("/sys/kernel/tracing/trace_pipe", "rb", buffering=0) as f:
while True:
line = f.readline().rstrip()
if not line:
continue
# Skip lost event lines
if line.startswith(b"CPU:"):
continue
# Parse BCC-style: first 16 bytes = task
task = line[:16].lstrip().decode("utf-8")
line = line[17:] # Skip past task field and space
# Find the colon that ends "pid cpu flags timestamp"
ts_end = line.find(b":")
if ts_end == -1:
raise ValueError("Cannot parse trace line")
# Split "pid [cpu] flags timestamp"
try:
parts = line[:ts_end].split()
if len(parts) < 4:
raise ValueError("Not enough fields")
pid = int(parts[0])
cpu = parts[1][1:-1] # Remove brackets from [cpu]
cpu = int(cpu)
flags = parts[2]
ts = float(parts[3])
except (ValueError, IndexError):
raise ValueError("Cannot parse trace line")
# Get message: skip ": symbol:" part
line = line[ts_end + 1 :] # Skip first ":"
sym_end = line.find(b":")
if sym_end != -1:
msg = line[sym_end + 2 :].decode("utf-8") # Skip ": " after symbol
else:
msg = line.lstrip().decode("utf-8")
return (task, pid, cpu, flags, ts, msg)

View File

@ -1,3 +0,0 @@
from .import_detector import vmlinux_proc
__all__ = ["vmlinux_proc"]

View File

@ -1,36 +0,0 @@
from enum import Enum, auto
from typing import Any, Dict, List, Optional
from dataclasses import dataclass
import llvmlite.ir as ir
from pythonbpf.vmlinux_parser.dependency_node import Field
class AssignmentType(Enum):
CONSTANT = auto()
STRUCT = auto()
ARRAY = auto() # probably won't be used
FUNCTION_POINTER = auto()
POINTER = auto() # again, probably won't be used
@dataclass
class FunctionSignature:
return_type: str
param_types: List[str]
varargs: bool
# Thew name of the assignment will be in the dict that uses this class
@dataclass
class AssignmentInfo:
value_type: AssignmentType
python_type: type
value: Optional[Any]
pointer_level: Optional[int]
signature: Optional[FunctionSignature] # For function pointers
# The key of the dict is the name of the field.
# Value is a tuple that contains the global variable representing that field
# along with all the information about that field as a Field type.
members: Optional[Dict[str, tuple[ir.GlobalVariable, Field]]] # For structs.
debug_info: Any

View File

@ -1,325 +0,0 @@
import logging
from functools import lru_cache
import importlib
from .dependency_handler import DependencyHandler
from .dependency_node import DependencyNode
import ctypes
from typing import Optional, Any, Dict
logger = logging.getLogger(__name__)
@lru_cache(maxsize=1)
def get_module_symbols(module_name: str):
imported_module = importlib.import_module(module_name)
return [name for name in dir(imported_module)], imported_module
def unwrap_pointer_type(type_obj: Any) -> Any:
"""
Recursively unwrap all pointer layers to get the base type.
This handles multiply nested pointers like LP_LP_struct_attribute_group
and returns the base type (struct_attribute_group).
Stops unwrapping when reaching a non-pointer type (one without _type_ attribute).
Args:
type_obj: The type object to unwrap
Returns:
The base type after unwrapping all pointer layers
"""
current_type = type_obj
# Keep unwrapping while it's a pointer/array type (has _type_)
# But stop if _type_ is just a string or basic type marker
while hasattr(current_type, "_type_"):
next_type = current_type._type_
# Stop if _type_ is a string (like 'c' for c_char)
if isinstance(next_type, str):
break
current_type = next_type
return current_type
def process_vmlinux_class(
node,
llvm_module,
handler: DependencyHandler,
):
symbols_in_module, imported_module = get_module_symbols("vmlinux")
if node.name in symbols_in_module:
vmlinux_type = getattr(imported_module, node.name)
process_vmlinux_post_ast(vmlinux_type, llvm_module, handler)
else:
raise ImportError(f"{node.name} not in vmlinux")
def process_vmlinux_post_ast(
elem_type_class,
llvm_handler,
handler: DependencyHandler,
processing_stack=None,
):
# Initialize processing stack on first call
if processing_stack is None:
processing_stack = set()
symbols_in_module, imported_module = get_module_symbols("vmlinux")
current_symbol_name = elem_type_class.__name__
logger.info(f"Begin {current_symbol_name} Processing")
field_table: Dict[str, list] = {}
is_complex_type = False
containing_type: Optional[Any] = None
ctype_complex_type: Optional[Any] = None
type_length: Optional[int] = None
module_name = getattr(elem_type_class, "__module__", None)
# Check if already processed
if handler.has_node(current_symbol_name):
logger.debug(f"Node {current_symbol_name} already processed and ready")
return True
# XXX:Check its use. It's probably not being used.
if current_symbol_name in processing_stack:
logger.debug(
f"Dependency already in processing stack for {current_symbol_name}, skipping"
)
return True
processing_stack.add(current_symbol_name)
if module_name == "vmlinux":
if hasattr(elem_type_class, "_type_"):
pass
else:
new_dep_node = DependencyNode(name=current_symbol_name)
# elem_type_class is the actual vmlinux struct/class
new_dep_node.set_ctype_struct(elem_type_class)
handler.add_node(new_dep_node)
class_obj = getattr(imported_module, current_symbol_name)
# Inspect the class fields
if hasattr(class_obj, "_fields_"):
for field_elem in class_obj._fields_:
field_name: str = ""
field_type: Optional[Any] = None
bitfield_size: Optional[int] = None
if len(field_elem) == 2:
field_name, field_type = field_elem
elif len(field_elem) == 3:
field_name, field_type, bitfield_size = field_elem
field_table[field_name] = [field_type, bitfield_size]
elif hasattr(class_obj, "__annotations__"):
for field_elem in class_obj.__annotations__.items():
if len(field_elem) == 2:
field_name, field_type = field_elem
bitfield_size = None
elif len(field_elem) == 3:
field_name, field_type, bitfield_size = field_elem
else:
raise ValueError(
"Number of fields in items() of class object unexpected"
)
field_table[field_name] = [field_type, bitfield_size]
else:
raise TypeError("Could not get required class and definition")
logger.debug(f"Extracted fields for {current_symbol_name}: {field_table}")
for elem in field_table.items():
elem_name, elem_temp_list = elem
[elem_type, elem_bitfield_size] = elem_temp_list
local_module_name = getattr(elem_type, "__module__", None)
new_dep_node.add_field(elem_name, elem_type, ready=False)
if local_module_name == ctypes.__name__:
# TODO: need to process pointer to ctype and also CFUNCTYPES here recursively. Current processing is a single dereference
new_dep_node.set_field_bitfield_size(elem_name, elem_bitfield_size)
# Process pointer to ctype
if isinstance(elem_type, type) and issubclass(
elem_type, ctypes._Pointer
):
# Get the pointed-to type
pointed_type = elem_type._type_
logger.debug(f"Found pointer to type: {pointed_type}")
new_dep_node.set_field_containing_type(elem_name, pointed_type)
new_dep_node.set_field_ctype_complex_type(
elem_name, ctypes._Pointer
)
new_dep_node.set_field_ready(elem_name, is_ready=True)
# Process function pointers (CFUNCTYPE)
elif hasattr(elem_type, "_restype_") and hasattr(
elem_type, "_argtypes_"
):
# This is a CFUNCTYPE or similar
logger.info(
f"Function pointer detected for {elem_name} with return type {elem_type._restype_} and arguments {elem_type._argtypes_}"
)
# Set the field as ready but mark it with special handling
new_dep_node.set_field_ctype_complex_type(
elem_name, ctypes.CFUNCTYPE
)
new_dep_node.set_field_ready(elem_name, is_ready=True)
logger.warning(
"Blindly processing CFUNCTYPE ctypes to ensure compilation. Unsupported"
)
else:
# Regular ctype
new_dep_node.set_field_ready(elem_name, is_ready=True)
logger.debug(
f"Field {elem_name} is direct ctypes type: {elem_type}"
)
elif local_module_name == "vmlinux":
new_dep_node.set_field_bitfield_size(elem_name, elem_bitfield_size)
logger.debug(
f"Processing vmlinux field: {elem_name}, type: {elem_type}"
)
if hasattr(elem_type, "_type_"):
is_complex_type = True
containing_type = elem_type._type_
if hasattr(elem_type, "_length_") and is_complex_type:
type_length = elem_type._length_
# Unwrap all pointer layers to get the base type for dependency tracking
base_type = unwrap_pointer_type(elem_type)
base_type_module = getattr(base_type, "__module__", None)
if base_type_module == "vmlinux":
base_type_name = (
base_type.__name__
if hasattr(base_type, "__name__")
else str(base_type)
)
# ONLY add vmlinux types as dependencies
new_dep_node.add_dependent(base_type_name)
logger.debug(
f"{containing_type} containing type of parent {elem_name} with {elem_type} and ctype {ctype_complex_type} and length {type_length}"
)
new_dep_node.set_field_containing_type(
elem_name, containing_type
)
new_dep_node.set_field_type_size(elem_name, type_length)
new_dep_node.set_field_ctype_complex_type(
elem_name, ctype_complex_type
)
new_dep_node.set_field_type(elem_name, elem_type)
# Check the containing_type module to decide whether to recurse
containing_type_module = getattr(
containing_type, "__module__", None
)
if containing_type_module == "vmlinux":
# Also unwrap containing_type to get base type name
base_containing_type = unwrap_pointer_type(
containing_type
)
containing_type_name = (
base_containing_type.__name__
if hasattr(base_containing_type, "__name__")
else str(base_containing_type)
)
# Check for self-reference or already processed
if containing_type_name == current_symbol_name:
# Self-referential pointer
logger.debug(
f"Self-referential pointer in {current_symbol_name}.{elem_name}"
)
new_dep_node.set_field_ready(elem_name, True)
elif handler.has_node(containing_type_name):
# Already processed
logger.debug(
f"Reusing already processed {containing_type_name}"
)
new_dep_node.set_field_ready(elem_name, True)
else:
# Process recursively - use base containing type, not the pointer wrapper
new_dep_node.add_dependent(containing_type_name)
process_vmlinux_post_ast(
base_containing_type,
llvm_handler,
handler,
processing_stack,
)
new_dep_node.set_field_ready(elem_name, True)
elif (
containing_type_module == ctypes.__name__
or containing_type_module is None
):
logger.debug(
f"Processing ctype internal{containing_type}"
)
new_dep_node.set_field_ready(elem_name, True)
else:
raise TypeError(
f"Module not supported in recursive resolution: {containing_type_module}"
)
elif (
base_type_module == ctypes.__name__
or base_type_module is None
):
# Handle ctypes or types with no module (like some internal ctypes types)
# DO NOT add ctypes as dependencies - just set field metadata and mark ready
logger.debug(
f"Base type {base_type} is ctypes - NOT adding as dependency, just processing field"
)
if isinstance(elem_type, type):
if issubclass(elem_type, ctypes.Array):
ctype_complex_type = ctypes.Array
elif issubclass(elem_type, ctypes._Pointer):
ctype_complex_type = ctypes._Pointer
else:
raise ImportError(
"Non Array and Pointer type ctype imports not supported in current version"
)
else:
raise TypeError("Unsupported ctypes subclass")
# Set field metadata but DO NOT add dependency or recurse
new_dep_node.set_field_containing_type(
elem_name, containing_type
)
new_dep_node.set_field_type_size(elem_name, type_length)
new_dep_node.set_field_ctype_complex_type(
elem_name, ctype_complex_type
)
new_dep_node.set_field_type(elem_name, elem_type)
new_dep_node.set_field_ready(elem_name, True)
else:
raise ImportError(
f"Unsupported module of {base_type}: {base_type_module}"
)
else:
new_dep_node.add_dependent(
elem_type.__name__
if hasattr(elem_type, "__name__")
else str(elem_type)
)
process_vmlinux_post_ast(
elem_type,
llvm_handler,
handler,
processing_stack,
)
new_dep_node.set_field_ready(elem_name, True)
else:
raise ValueError(
f"{elem_name} with type {elem_type} from module {module_name} not supported in recursive resolver"
)
elif module_name == ctypes.__name__ or module_name is None:
# Handle ctypes types - these don't need processing, just return
logger.debug(f"Skipping ctypes type {current_symbol_name}")
return True
else:
raise ImportError(f"UNSUPPORTED Module {module_name}")
logger.info(
f"{current_symbol_name} processed and handler readiness {handler.is_ready}"
)
return True

View File

@ -1,173 +0,0 @@
from typing import Optional, Dict, List, Iterator
from .dependency_node import DependencyNode
class DependencyHandler:
"""
Manages a collection of DependencyNode objects with no duplicates.
Ensures that no two nodes with the same name can be added and provides
methods to check readiness and retrieve specific nodes.
Example usage:
# Create a handler
handler = DependencyHandler()
# Create some dependency nodes
node1 = DependencyNode(name="node1")
node1.add_field("field1", str)
node1.set_field_value("field1", "value1")
node2 = DependencyNode(name="node2")
node2.add_field("field1", int)
# Add nodes to the handler
handler.add_node(node1)
handler.add_node(node2)
# Check if a specific node exists
print(handler.has_node("node1")) # True
# Get a reference to a node and modify it
node = handler.get_node("node2")
node.set_field_value("field1", 42)
# Check if all nodes are ready
print(handler.is_ready) # False (node2 is ready, but node1 isn't)
"""
def __init__(self):
# Using a dictionary with node names as keys ensures name uniqueness
# and provides efficient lookups
self._nodes: Dict[str, DependencyNode] = {}
def add_node(self, node: DependencyNode) -> bool:
"""
Add a dependency node to the handler.
Args:
node: The DependencyNode to add
Returns:
bool: True if the node was added, False if a node with the same name already exists
Raises:
TypeError: If the provided object is not a DependencyNode
"""
if not isinstance(node, DependencyNode):
raise TypeError(f"Expected DependencyNode, got {type(node).__name__}")
# Check if a node with this name already exists
if node.name in self._nodes:
return False
self._nodes[node.name] = node
return True
@property
def is_ready(self) -> bool:
"""
Check if all nodes are ready.
Returns:
bool: True if all nodes are ready (or if there are no nodes), False otherwise
"""
if not self._nodes:
return True
return all(node.is_ready for node in self._nodes.values())
def has_node(self, name: str) -> bool:
"""
Check if a node with the given name exists.
Args:
name: The name to check
Returns:
bool: True if a node with the given name exists, False otherwise
"""
return name in self._nodes
def get_node(self, name: str) -> Optional[DependencyNode]:
"""
Get a node by name for manipulation.
Args:
name: The name of the node to retrieve
Returns:
Optional[DependencyNode]: The node with the given name, or None if not found
"""
return self._nodes.get(name)
def remove_node(self, node_or_name) -> bool:
"""
Remove a node by name or reference.
Args:
node_or_name: The node to remove or its name
Returns:
bool: True if the node was removed, False if not found
"""
if isinstance(node_or_name, DependencyNode):
name = node_or_name.name
else:
name = node_or_name
if name in self._nodes:
del self._nodes[name]
return True
return False
def get_all_nodes(self) -> List[DependencyNode]:
"""
Get all nodes stored in the handler.
Returns:
List[DependencyNode]: List of all nodes
"""
return list(self._nodes.values())
def __iter__(self) -> Iterator[DependencyNode]:
"""
Iterate over all nodes.
Returns:
Iterator[DependencyNode]: Iterator over all nodes
"""
return iter(self._nodes.values())
def __len__(self) -> int:
"""
Get the number of nodes in the handler.
Returns:
int: The number of nodes
"""
return len(self._nodes)
def __getitem__(self, name: str) -> DependencyNode:
"""
Get a node by name using dictionary-style access.
Args:
name: The name of the node to retrieve
Returns:
DependencyNode: The node with the given name
Raises:
KeyError: If no node with the given name exists
Example:
node = handler["some-dep_node_name"]
"""
if name not in self._nodes:
raise KeyError(f"No node with name '{name}' found")
return self._nodes[name]
@property
def nodes(self):
return self._nodes

View File

@ -1,388 +0,0 @@
from dataclasses import dataclass, field
from typing import Dict, Any, Optional
import ctypes
# TODO: FIX THE FUCKING TYPE NAME CONVENTION.
@dataclass
class Field:
"""Represents a field in a dependency node with its type and readiness state."""
name: str
type: type
ctype_complex_type: Optional[Any]
containing_type: Optional[Any]
type_size: Optional[int]
bitfield_size: Optional[int]
offset: int
value: Any = None
ready: bool = False
def __hash__(self):
"""
Create a hash based on the immutable attributes that define this field's identity.
This allows Field objects to be used as dictionary keys.
"""
# Use a tuple of the fields that uniquely identify this field
identity = (
self.name,
id(self.type), # Use id for non-hashable types
id(self.ctype_complex_type) if self.ctype_complex_type else None,
id(self.containing_type) if self.containing_type else None,
self.type_size,
self.bitfield_size,
self.offset,
self.value if self.value else None,
)
return hash(identity)
def __eq__(self, other):
"""
Define equality consistent with the hash function.
Two fields are equal if they have they are the same
"""
return self is other
def set_ready(self, is_ready: bool = True) -> None:
"""Set the readiness state of this field."""
self.ready = is_ready
def set_value(self, value: Any, mark_ready: bool = False) -> None:
"""Set the value of this field and optionally mark it as ready."""
self.value = value
if mark_ready:
self.ready = True
def set_type(self, given_type, mark_ready: bool = False) -> None:
"""Set value of the type field and mark as ready"""
self.type = given_type
if mark_ready:
self.ready = True
def set_containing_type(
self, containing_type: Optional[Any], mark_ready: bool = False
) -> None:
"""Set the containing_type of this field and optionally mark it as ready."""
self.containing_type = containing_type
if mark_ready:
self.ready = True
def set_type_size(self, type_size: Any, mark_ready: bool = False) -> None:
"""Set the type_size of this field and optionally mark it as ready."""
self.type_size = type_size
if mark_ready:
self.ready = True
def set_ctype_complex_type(
self, ctype_complex_type: Any, mark_ready: bool = False
) -> None:
"""Set the ctype_complex_type of this field and optionally mark it as ready."""
self.ctype_complex_type = ctype_complex_type
if mark_ready:
self.ready = True
def set_bitfield_size(self, bitfield_size: Any, mark_ready: bool = False) -> None:
"""Set the bitfield_size of this field and optionally mark it as ready."""
self.bitfield_size = bitfield_size
if mark_ready:
self.ready = True
def set_offset(self, offset: int) -> None:
"""Set the offset of this field"""
self.offset = offset
@dataclass
class DependencyNode:
"""
A node with typed fields and readiness tracking.
Example usage:
# Create a dependency node for a Person
somestruct = DependencyNode(name="struct_1")
# Add fields with their types
somestruct.add_field("field_1", str)
somestruct.add_field("field_2", int)
somestruct.add_field("field_3", str)
# Check if the node is ready (should be False initially)
print(f"Is node ready? {somestruct.is_ready}") # False
# Set some field values
somestruct.set_field_value("field_1", "someproperty")
somestruct.set_field_value("field_2", 30)
# Check if the node is ready (still False because email is not ready)
print(f"Is node ready? {somestruct.is_ready}") # False
# Set the last field and make the node ready
somestruct.set_field_value("field_3", "anotherproperty")
# Now the node should be ready
print(f"Is node ready? {somestruct.is_ready}") # True
# You can also mark a field as not ready
somestruct.set_field_ready("field_3", False)
# Now the node is not ready again
print(f"Is node ready? {somestruct.is_ready}") # False
# Get all field values
print(somestruct.get_field_values()) # {'field_1': 'someproperty', 'field_2': 30, 'field_3': 'anotherproperty'}
# Get only ready fields
ready_fields = somestruct.get_ready_fields()
print(f"Ready fields: {[field.name for field in ready_fields.values()]}") # ['field_1', 'field_2']
"""
name: str
depends_on: Optional[list[str]] = None
fields: Dict[str, Field] = field(default_factory=dict)
_ready_cache: Optional[bool] = field(default=None, repr=False)
current_offset: int = 0
ctype_struct: Optional[Any] = field(default=None, repr=False)
def add_field(
self,
name: str,
field_type: type,
initial_value: Any = None,
containing_type: Optional[Any] = None,
type_size: Optional[int] = None,
ctype_complex_type: Optional[int] = None,
bitfield_size: Optional[int] = None,
ready: bool = False,
offset: int = 0,
) -> None:
"""Add a field to the node with an optional initial value and readiness state."""
if self.depends_on is None:
self.depends_on = []
self.fields[name] = Field(
name=name,
type=field_type,
value=initial_value,
ready=ready,
containing_type=containing_type,
type_size=type_size,
ctype_complex_type=ctype_complex_type,
bitfield_size=bitfield_size,
offset=offset,
)
# Invalidate readiness cache
self._ready_cache = None
def set_ctype_struct(self, ctype_struct: Any) -> None:
"""Set the ctypes structure for automatic offset calculation."""
self.ctype_struct = ctype_struct
def __sizeof__(self):
# If we have a ctype_struct, use its size
if self.ctype_struct is not None:
return ctypes.sizeof(self.ctype_struct)
return self.current_offset
def get_field(self, name: str) -> Field:
"""Get a field by name."""
return self.fields[name]
def set_field_value(self, name: str, value: Any, mark_ready: bool = False) -> None:
"""Set a field's value and optionally mark it as ready."""
if name not in self.fields:
raise KeyError(f"Field '{name}' does not exist in node '{self.name}'")
self.fields[name].set_value(value, mark_ready)
# Invalidate readiness cache
self._ready_cache = None
def set_field_type(self, name: str, type: Any, mark_ready: bool = False) -> None:
"""Set a field's type and optionally mark it as ready."""
if name not in self.fields:
raise KeyError(f"Field '{name}' does not exist in node '{self.name}'")
self.fields[name].set_type(type, mark_ready)
# Invalidate readiness cache
self._ready_cache = None
def set_field_containing_type(
self, name: str, containing_type: Any, mark_ready: bool = False
) -> None:
"""Set a field's containing_type and optionally mark it as ready."""
if name not in self.fields:
raise KeyError(f"Field '{name}' does not exist in node '{self.name}'")
self.fields[name].set_containing_type(containing_type, mark_ready)
# Invalidate readiness cache
self._ready_cache = None
def set_field_type_size(
self, name: str, type_size: Any, mark_ready: bool = False
) -> None:
"""Set a field's type_size and optionally mark it as ready."""
if name not in self.fields:
raise KeyError(f"Field '{name}' does not exist in node '{self.name}'")
self.fields[name].set_type_size(type_size, mark_ready)
# Invalidate readiness cache
self._ready_cache = None
def set_field_ctype_complex_type(
self, name: str, ctype_complex_type: Any, mark_ready: bool = False
) -> None:
"""Set a field's ctype_complex_type and optionally mark it as ready."""
if name not in self.fields:
raise KeyError(f"Field '{name}' does not exist in node '{self.name}'")
self.fields[name].set_ctype_complex_type(ctype_complex_type, mark_ready)
# Invalidate readiness cache
self._ready_cache = None
def set_field_bitfield_size(
self, name: str, bitfield_size: Any, mark_ready: bool = False
) -> None:
"""Set a field's bitfield_size and optionally mark it as ready."""
if name not in self.fields:
raise KeyError(f"Field '{name}' does not exist in node '{self.name}'")
self.fields[name].set_bitfield_size(bitfield_size, mark_ready)
# Invalidate readiness cache
self._ready_cache = None
def set_field_ready(
self,
name: str,
is_ready: bool = False,
size_of_containing_type: Optional[int] = None,
) -> None:
"""Mark a field as ready or not ready."""
if name not in self.fields:
raise KeyError(f"Field '{name}' does not exist in node '{self.name}'")
self.fields[name].set_ready(is_ready)
# Use ctypes built-in offset if available
if self.ctype_struct is not None:
try:
self.fields[name].set_offset(getattr(self.ctype_struct, name).offset)
except AttributeError:
# Fallback to manual calculation if field not found in ctype_struct
self.fields[name].set_offset(self.current_offset)
self.current_offset += self._calculate_size(
name, size_of_containing_type
)
else:
# Manual offset calculation when no ctype_struct is available
self.fields[name].set_offset(self.current_offset)
self.current_offset += self._calculate_size(name, size_of_containing_type)
# Invalidate readiness cache
self._ready_cache = None
def _calculate_size(
self, name: str, size_of_containing_type: Optional[int] = None
) -> int:
processing_field = self.fields[name]
# size_of_field will be in bytes
if processing_field.type.__module__ == ctypes.__name__:
size_of_field = ctypes.sizeof(processing_field.type)
return size_of_field
elif processing_field.type.__module__ == "vmlinux":
if processing_field.ctype_complex_type is not None:
if issubclass(processing_field.ctype_complex_type, ctypes.Array):
if processing_field.containing_type.__module__ == ctypes.__name__:
if (
processing_field.containing_type is not None
and processing_field.type_size is not None
):
size_of_field = (
ctypes.sizeof(processing_field.containing_type)
* processing_field.type_size
)
else:
raise RuntimeError(
f"{processing_field} has no containing_type or type_size"
)
return size_of_field
elif processing_field.containing_type.__module__ == "vmlinux":
if (
size_of_containing_type is not None
and processing_field.type_size is not None
):
size_of_field = (
size_of_containing_type * processing_field.type_size
)
else:
raise RuntimeError(
f"{processing_field} has no containing_type or type_size"
)
return size_of_field
elif issubclass(processing_field.ctype_complex_type, ctypes._Pointer):
return ctypes.sizeof(ctypes.c_void_p)
else:
raise NotImplementedError(
"This subclass of ctype not supported yet"
)
elif processing_field.type_size is not None:
# Handle vmlinux types with type_size but no ctype_complex_type
# This means it's a direct vmlinux struct field (not array/pointer wrapped)
# The type_size should already contain the full size of the struct
# But if there's a containing_type from vmlinux, we need that size
if processing_field.containing_type is not None:
if processing_field.containing_type.__module__ == "vmlinux":
# For vmlinux containing types, we need the pre-calculated size
if size_of_containing_type is not None:
return size_of_containing_type * processing_field.type_size
else:
raise RuntimeError(
f"Field {name}: vmlinux containing_type requires size_of_containing_type"
)
else:
raise ModuleNotFoundError(
f"Containing type module {processing_field.containing_type.__module__} not supported"
)
else:
raise RuntimeError("Wrong type found with no containing type")
else:
# No ctype_complex_type and no type_size, must rely on size_of_containing_type
if size_of_containing_type is None:
raise RuntimeError(
f"Size of containing type {size_of_containing_type} is None"
)
return size_of_containing_type
else:
raise ModuleNotFoundError("Module is not supported for the operation")
raise RuntimeError("control should not reach here")
@property
def is_ready(self) -> bool:
"""Check if the node is ready (all fields are ready)."""
# Use cached value if available
if self._ready_cache is not None:
return self._ready_cache
# Calculate readiness only when needed
if not self.fields:
self._ready_cache = True
return True
self._ready_cache = all(elem.ready for elem in self.fields.values())
return self._ready_cache
def get_field_values(self) -> Dict[str, Any]:
"""Get a dictionary of field names to their values."""
return {name: elem.value for name, elem in self.fields.items()}
def get_ready_fields(self) -> Dict[str, Field]:
"""Get all fields that are marked as ready."""
return {name: elem for name, elem in self.fields.items() if elem.ready}
def get_not_ready_fields(self) -> Dict[str, Field]:
"""Get all fields that are marked as not ready."""
return {name: elem for name, elem in self.fields.items() if not elem.ready}
def add_dependent(self, dep_type):
if dep_type in self.depends_on:
return
else:
self.depends_on.append(dep_type)

View File

@ -1,153 +0,0 @@
import ast
import logging
import importlib
import inspect
from .assignment_info import AssignmentInfo, AssignmentType
from .dependency_handler import DependencyHandler
from .ir_gen import IRGenerator
from .class_handler import process_vmlinux_class
logger = logging.getLogger(__name__)
def detect_import_statement(
tree: ast.AST,
) -> list[tuple[str, ast.ImportFrom, str, str]]:
"""
Parse AST and detect import statements from vmlinux.
Returns a list of tuples (module_name, imported_item) for vmlinux imports.
Raises SyntaxError for invalid import patterns.
Args:
tree: The AST to parse
Returns:
List of tuples containing (module_name, imported_item) for each vmlinux import
Raises:
SyntaxError: If import * is used
"""
vmlinux_imports = []
for node in ast.walk(tree):
# Handle "from vmlinux import ..." statements
if isinstance(node, ast.ImportFrom):
if node.module == "vmlinux":
# Check for wildcard import: from vmlinux import *
if any(alias.name == "*" for alias in node.names):
raise SyntaxError(
"Wildcard imports from vmlinux are not supported. "
"Please import specific types explicitly."
)
# Check if no specific import is specified (should not happen with valid Python)
if len(node.names) == 0:
raise SyntaxError(
"Import from vmlinux must specify at least one type."
)
# Support multiple imports: from vmlinux import A, B, C
for alias in node.names:
import_name = alias.name
# Use alias if provided, otherwise use the original name
as_name = alias.asname if alias.asname else alias.name
vmlinux_imports.append(("vmlinux", node, import_name, as_name))
logger.info(f"Found vmlinux import: {import_name} as {as_name}")
# Handle "import vmlinux" statements (not typical but should be rejected)
elif isinstance(node, ast.Import):
for alias in node.names:
if alias.name == "vmlinux" or alias.name.startswith("vmlinux."):
raise SyntaxError(
"Direct import of vmlinux module is not supported. "
"Use 'from vmlinux import <type>' instead."
)
logger.info(f"Total vmlinux imports detected: {len(vmlinux_imports)}")
return vmlinux_imports
def vmlinux_proc(tree: ast.AST, module):
import_statements = detect_import_statement(tree)
# initialise dependency handler
handler = DependencyHandler()
# initialise assignment dictionary of name to type
assignments: dict[str, AssignmentInfo] = {}
if not import_statements:
logger.info("No vmlinux imports found")
return None
# Import vmlinux module directly
try:
vmlinux_mod = importlib.import_module("vmlinux")
except ImportError:
logger.warning("Could not import vmlinux module")
return None
source_file = inspect.getsourcefile(vmlinux_mod)
if source_file is None:
logger.warning("Cannot find source for vmlinux module")
return None
with open(source_file, "r") as f:
mod_ast = ast.parse(f.read(), filename=source_file)
for import_mod, import_node, imported_name, as_name in import_statements:
found = False
for mod_node in mod_ast.body:
if isinstance(mod_node, ast.ClassDef) and mod_node.name == imported_name:
process_vmlinux_class(mod_node, module, handler)
found = True
break
if isinstance(mod_node, ast.Assign):
for target in mod_node.targets:
if isinstance(target, ast.Name) and target.id == imported_name:
process_vmlinux_assign(mod_node, module, assignments, as_name)
found = True
break
if found:
break
if not found:
logger.info(f"{imported_name} not found as ClassDef or Assign in vmlinux")
IRGenerator(module, handler, assignments)
return assignments
def process_vmlinux_assign(
node, module, assignments: dict[str, AssignmentInfo], target_name=None
):
"""Process assignments from vmlinux module."""
# Only handle single-target assignments
if len(node.targets) == 1 and isinstance(node.targets[0], ast.Name):
# Use provided target_name (for aliased imports) or fall back to original name
if target_name is None:
target_name = node.targets[0].id
# Handle constant value assignments
if isinstance(node.value, ast.Constant):
# Fixed: using proper TypedDict creation syntax with named arguments
assignments[target_name] = AssignmentInfo(
value_type=AssignmentType.CONSTANT,
python_type=type(node.value.value),
value=node.value.value,
pointer_level=None,
signature=None,
members=None,
debug_info=None,
)
logger.info(
f"Added assignment: {target_name} = {node.value.value!r} of type {type(node.value.value)}"
)
# Handle other assignment types that we may need to support
else:
logger.warning(
f"Unsupported assignment type for {target_name}: {ast.dump(node.value)}"
)
else:
raise ValueError("Not a simple assignment")

View File

@ -1,3 +0,0 @@
from .ir_generation import IRGenerator
__all__ = ["IRGenerator"]

View File

@ -1,190 +0,0 @@
from pythonbpf.debuginfo import DebugInfoGenerator, dwarf_constants as dc
from ..dependency_node import DependencyNode
import ctypes
import logging
from typing import List, Any, Tuple
logger = logging.getLogger(__name__)
def debug_info_generation(
struct: DependencyNode,
llvm_module,
generated_debug_info: List[Tuple[DependencyNode, Any]],
) -> Any:
"""
Generate DWARF debug information for a struct defined in a DependencyNode.
Args:
struct: The dependency node containing struct information
llvm_module: The LLVM module to add debug info to
generated_debug_info: List of tuples (struct, debug_info) to track generated debug info
Returns:
The generated global variable debug info, or None for unsupported types
"""
# Set up debug info generator
generator = DebugInfoGenerator(llvm_module)
# Check if debug info for this struct has already been generated
for existing_struct, debug_info in generated_debug_info:
if existing_struct.name == struct.name:
return debug_info
# Check if this is a union (not supported yet)
if not struct.name.startswith("struct_"):
logger.warning(f"Skipping debug info generation for union: {struct.name}")
# Create a minimal forward declaration for unions
union_type = generator.create_struct_type(
[], struct.__sizeof__() * 8, is_distinct=True
)
return union_type
# Process all fields and create members for the struct
members = []
sorted_fields = sorted(struct.fields.items(), key=lambda item: item[1].offset)
for field_name, field in sorted_fields:
try:
# Get appropriate debug type for this field
field_type = _get_field_debug_type(
field_name, field, generator, struct, generated_debug_info
)
# Ensure field_type is a tuple
if not isinstance(field_type, tuple) or len(field_type) != 2:
logger.error(f"Invalid field_type for {field_name}: {field_type}")
continue
# Create struct member with proper offset
member = generator.create_struct_member_vmlinux(
field_name, field_type, field.offset * 8
)
members.append(member)
except Exception as e:
logger.error(f"Failed to process field {field_name} in {struct.name}: {e}")
continue
struct_name = struct.name.removeprefix("struct_")
# Create struct type with all members
struct_type = generator.create_struct_type_with_name(
struct_name, members, struct.__sizeof__() * 8, is_distinct=True
)
return struct_type
def _get_field_debug_type(
field_name: str,
field,
generator: DebugInfoGenerator,
parent_struct: DependencyNode,
generated_debug_info: List[Tuple[DependencyNode, Any]],
) -> tuple[Any, int]:
"""
Determine the appropriate debug type for a field based on its Python/ctypes type.
Args:
field_name: Name of the field
field: Field object containing type information
generator: DebugInfoGenerator instance
parent_struct: The parent struct containing this field
generated_debug_info: List of already generated debug info
Returns:
A tuple of (debug_type, size_in_bits)
"""
# Handle complex types (arrays, pointers, function pointers)
if field.ctype_complex_type is not None:
# Handle function pointer types (CFUNCTYPE)
if callable(field.ctype_complex_type):
# Function pointers are represented as void pointers
logger.warning(
f"Field {field_name} is a function pointer, using void pointer"
)
void_ptr = generator.create_pointer_type(None, 64)
return void_ptr, 64
elif issubclass(field.ctype_complex_type, ctypes.Array):
# Handle array types
element_type, base_type_size = _get_basic_debug_type(
field.containing_type, generator
)
return generator.create_array_type_vmlinux(
(element_type, base_type_size * field.type_size), field.type_size
), field.type_size * base_type_size
elif issubclass(field.ctype_complex_type, ctypes._Pointer):
# Handle pointer types
pointee_type, _ = _get_basic_debug_type(field.containing_type, generator)
return generator.create_pointer_type(pointee_type), 64
# Handle other vmlinux types (nested structs)
if field.type.__module__ == "vmlinux":
# If it's a struct from vmlinux, check if we've already generated debug info for it
struct_name = field.type.__name__
# Look for existing debug info in the list
for existing_struct, debug_info in generated_debug_info:
if existing_struct.name == struct_name:
# Use existing debug info
return debug_info, existing_struct.__sizeof__() * 8
# If not found, create a forward declaration
# This will be completed when the actual struct is processed
logger.info(
f"Forward declaration created for {struct_name} in {parent_struct.name}"
)
forward_type = generator.create_struct_type([], 0, is_distinct=True)
return forward_type, 0
# Handle basic C types
return _get_basic_debug_type(field.type, generator)
def _get_basic_debug_type(ctype, generator: DebugInfoGenerator) -> Any:
"""
Map a ctypes type to a DWARF debug type.
Args:
ctype: A ctypes type or Python type
generator: DebugInfoGenerator instance
Returns:
The corresponding debug type
"""
# Map ctypes to debug info types
if ctype == ctypes.c_char or ctype == ctypes.c_byte:
return generator.get_basic_type("char", 8, dc.DW_ATE_signed_char), 8
elif ctype == ctypes.c_ubyte or ctype == ctypes.c_uint8:
return generator.get_basic_type("unsigned char", 8, dc.DW_ATE_unsigned_char), 8
elif ctype == ctypes.c_short or ctype == ctypes.c_int16:
return generator.get_basic_type("short", 16, dc.DW_ATE_signed), 16
elif ctype == ctypes.c_ushort or ctype == ctypes.c_uint16:
return generator.get_basic_type("unsigned short", 16, dc.DW_ATE_unsigned), 16
elif ctype == ctypes.c_int or ctype == ctypes.c_int32:
return generator.get_basic_type("int", 32, dc.DW_ATE_signed), 32
elif ctype == ctypes.c_uint or ctype == ctypes.c_uint32:
return generator.get_basic_type("unsigned int", 32, dc.DW_ATE_unsigned), 32
elif ctype == ctypes.c_long:
return generator.get_basic_type("long", 64, dc.DW_ATE_signed), 64
elif ctype == ctypes.c_ulong:
return generator.get_basic_type("unsigned long", 64, dc.DW_ATE_unsigned), 64
elif ctype == ctypes.c_longlong or ctype == ctypes.c_int64:
return generator.get_basic_type("long long", 64, dc.DW_ATE_signed), 64
elif ctype == ctypes.c_ulonglong or ctype == ctypes.c_uint64:
return generator.get_basic_type(
"unsigned long long", 64, dc.DW_ATE_unsigned
), 64
elif ctype == ctypes.c_float:
return generator.get_basic_type("float", 32, dc.DW_ATE_float), 32
elif ctype == ctypes.c_double:
return generator.get_basic_type("double", 64, dc.DW_ATE_float), 64
elif ctype == ctypes.c_bool:
return generator.get_basic_type("bool", 8, dc.DW_ATE_boolean), 8
elif ctype == ctypes.c_char_p:
char_type = generator.get_basic_type("char", 8, dc.DW_ATE_signed_char), 8
return generator.create_pointer_type(char_type)
elif ctype == ctypes.c_void_p:
return generator.create_pointer_type(None), 64
else:
return generator.get_uint64_type(), 64

View File

@ -1,287 +0,0 @@
import ctypes
import logging
from ..assignment_info import AssignmentInfo, AssignmentType
from ..dependency_handler import DependencyHandler
from .debug_info_gen import debug_info_generation
from ..dependency_node import DependencyNode
import llvmlite.ir as ir
logger = logging.getLogger(__name__)
class IRGenerator:
# This field keeps track of the non_struct names to avoid duplicate name errors.
type_number = 0
unprocessed_store: list[str] = []
# get the assignments dict and add this stuff to it.
def __init__(self, llvm_module, handler: DependencyHandler, assignments):
self.llvm_module = llvm_module
self.handler: DependencyHandler = handler
self.generated: list[str] = []
self.generated_debug_info: list = []
# Use struct_name and field_name as key instead of Field object
self.generated_field_names: dict[str, dict[str, ir.GlobalVariable]] = {}
self.assignments: dict[str, AssignmentInfo] = assignments
if not handler.is_ready:
raise ImportError(
"Semantic analysis of vmlinux imports failed. Cannot generate IR"
)
for struct in handler:
self.struct_processor(struct)
def struct_processor(self, struct, processing_stack=None):
# Initialize processing stack on first call
if processing_stack is None:
processing_stack = set()
# If already generated, skip
if struct.name in self.generated:
return
# Detect circular dependency
if struct.name in processing_stack:
logger.info(
f"Circular dependency detected for {struct.name}, skipping recursive processing"
)
# For circular dependencies, we can either:
# 1. Use forward declarations (opaque pointers)
# 2. Mark as incomplete and process later
# 3. Generate a placeholder type
# Here we'll just skip and let it be processed in its own call
return
logger.info(f"IR generating for {struct.name}")
# Add to processing stack before processing dependencies
processing_stack.add(struct.name)
try:
# Process all dependencies first
if struct.depends_on is None:
pass
else:
for dependency in struct.depends_on:
if dependency not in self.generated:
# Check if dependency exists in handler
if dependency in self.handler.nodes:
dep_node_from_dependency = self.handler[dependency]
# Pass the processing_stack down to track circular refs
self.struct_processor(
dep_node_from_dependency, processing_stack
)
else:
raise RuntimeError(
f"Warning: Dependency {dependency} not found in handler"
)
# Generate IR first to populate field names
struct_debug_info = self.gen_ir(struct, self.generated_debug_info)
self.generated_debug_info.append((struct, struct_debug_info))
# Fill the assignments dictionary with struct information
if struct.name not in self.assignments:
# Create a members dictionary for AssignmentInfo
members_dict = {}
for field_name, field in struct.fields.items():
# Get the generated field name from our dictionary, or use field_name if not found
if (
struct.name in self.generated_field_names
and field_name in self.generated_field_names[struct.name]
):
field_global_variable = self.generated_field_names[struct.name][
field_name
]
members_dict[field_name] = (field_global_variable, field)
else:
raise ValueError(
f"llvm global name not found for struct field {field_name}"
)
# members_dict[field_name] = (field_name, field)
# Add struct to assignments dictionary
self.assignments[struct.name] = AssignmentInfo(
value_type=AssignmentType.STRUCT,
python_type=struct.ctype_struct,
value=None,
pointer_level=None,
signature=None,
members=members_dict,
debug_info=struct_debug_info,
)
logger.info(f"Added struct assignment info for {struct.name}")
self.generated.append(struct.name)
finally:
# Remove from processing stack after we're done
processing_stack.discard(struct.name)
def gen_ir(self, struct, generated_debug_info):
# TODO: we add the btf_ama attribute by monkey patching in the end of compilation, but once llvmlite
# accepts our issue, we will resort to normal accessed attribute based attribute addition
# currently we generate all possible field accesses for CO-RE and put into the assignment table
debug_info = debug_info_generation(
struct, self.llvm_module, generated_debug_info
)
field_index = 0
# Make sure the struct has an entry in our field names dictionary
if struct.name not in self.generated_field_names:
self.generated_field_names[struct.name] = {}
for field_name, field in struct.fields.items():
# does not take arrays and similar types into consideration yet.
if callable(field.ctype_complex_type):
# Function pointer case - generate a simple field accessor
field_co_re_name, returned = self._struct_name_generator(
struct, field, field_index
)
field_index += 1
globvar = ir.GlobalVariable(
self.llvm_module, ir.IntType(64), name=field_co_re_name
)
globvar.linkage = "external"
globvar.set_metadata("llvm.preserve.access.index", debug_info)
self.generated_field_names[struct.name][field_name] = globvar
elif field.ctype_complex_type is not None and issubclass(
field.ctype_complex_type, ctypes.Array
):
array_size = field.type_size
containing_type = field.containing_type
if containing_type.__module__ == ctypes.__name__:
containing_type_size = ctypes.sizeof(containing_type)
if array_size == 0:
field_co_re_name, returned = self._struct_name_generator(
struct, field, field_index, True, 0, containing_type_size
)
globvar = ir.GlobalVariable(
self.llvm_module, ir.IntType(64), name=field_co_re_name
)
globvar.linkage = "external"
globvar.set_metadata("llvm.preserve.access.index", debug_info)
self.generated_field_names[struct.name][field_name] = globvar
field_index += 1
continue
for i in range(0, array_size):
field_co_re_name, returned = self._struct_name_generator(
struct, field, field_index, True, i, containing_type_size
)
globvar = ir.GlobalVariable(
self.llvm_module, ir.IntType(64), name=field_co_re_name
)
globvar.linkage = "external"
globvar.set_metadata("llvm.preserve.access.index", debug_info)
self.generated_field_names[struct.name][field_name] = globvar
field_index += 1
elif field.type_size is not None:
array_size = field.type_size
containing_type = field.containing_type
if containing_type.__module__ == "vmlinux":
# Unwrap all pointer layers to get the base struct type
base_containing_type = containing_type
while hasattr(base_containing_type, "_type_"):
next_type = base_containing_type._type_
# Stop if _type_ is a string (like 'c' for c_char)
# TODO: stacked pointers not handl;ing ctypes check here as well
if isinstance(next_type, str):
break
base_containing_type = next_type
# Get the base struct name
base_struct_name = (
base_containing_type.__name__
if hasattr(base_containing_type, "__name__")
else str(base_containing_type)
)
# Look up the size using the base struct name
containing_type_size = self.handler[base_struct_name].current_offset
if array_size == 0:
field_co_re_name, returned = self._struct_name_generator(
struct, field, field_index, True, 0, containing_type_size
)
globvar = ir.GlobalVariable(
self.llvm_module, ir.IntType(64), name=field_co_re_name
)
globvar.linkage = "external"
globvar.set_metadata("llvm.preserve.access.index", debug_info)
self.generated_field_names[struct.name][field_name] = globvar
field_index += 1
else:
for i in range(0, array_size):
field_co_re_name, returned = self._struct_name_generator(
struct,
field,
field_index,
True,
i,
containing_type_size,
)
globvar = ir.GlobalVariable(
self.llvm_module, ir.IntType(64), name=field_co_re_name
)
globvar.linkage = "external"
globvar.set_metadata(
"llvm.preserve.access.index", debug_info
)
self.generated_field_names[struct.name][field_name] = (
globvar
)
field_index += 1
else:
field_co_re_name, returned = self._struct_name_generator(
struct, field, field_index
)
field_index += 1
globvar = ir.GlobalVariable(
self.llvm_module, ir.IntType(64), name=field_co_re_name
)
globvar.linkage = "external"
globvar.set_metadata("llvm.preserve.access.index", debug_info)
self.generated_field_names[struct.name][field_name] = globvar
return debug_info
def _struct_name_generator(
self,
struct: DependencyNode,
field,
field_index: int,
is_indexed: bool = False,
index: int = 0,
containing_type_size: int = 0,
) -> tuple[str, bool]:
# TODO: Does not support Unions as well as recursive pointer and array type naming
if is_indexed:
name = (
"llvm."
+ struct.name.removeprefix("struct_")
+ f":0:{field.offset + index * containing_type_size}"
+ "$"
+ f"0:{field_index}:{index}"
)
return name, True
elif struct.name.startswith("struct_"):
name = (
"llvm."
+ struct.name.removeprefix("struct_")
+ f":0:{field.offset}"
+ "$"
+ f"0:{field_index}"
)
return name, True
else:
logger.warning(
"Blindly handling non-struct type to avoid type errors in vmlinux IR generation. Possibly a union."
)
self.type_number += 1
unprocessed_type = "unprocessed_type_" + str(self.handler[struct.name].name)
if self.unprocessed_store.__contains__(unprocessed_type):
return unprocessed_type + "_" + str(self.type_number), False
else:
self.unprocessed_store.append(unprocessed_type)
return unprocessed_type, False
# raise TypeError(
# "Name generation cannot occur due to type name not starting with struct"
# )

View File

@ -1,406 +0,0 @@
import logging
from typing import Any
import ctypes
from llvmlite import ir
from pythonbpf.local_symbol import LocalSymbol
from pythonbpf.vmlinux_parser.assignment_info import AssignmentType
logger = logging.getLogger(__name__)
class VmlinuxHandler:
"""Handler for vmlinux-related operations"""
_instance = None
@classmethod
def get_instance(cls):
"""Get the singleton instance"""
if cls._instance is None:
logger.warning("VmlinuxHandler used before initialization")
return None
return cls._instance
@classmethod
def initialize(cls, vmlinux_symtab):
"""Initialize the handler with vmlinux symbol table"""
cls._instance = cls(vmlinux_symtab)
return cls._instance
def __init__(self, vmlinux_symtab):
"""Initialize with vmlinux symbol table"""
self.vmlinux_symtab = vmlinux_symtab
logger.info(
f"VmlinuxHandler initialized with {len(vmlinux_symtab) if vmlinux_symtab else 0} symbols"
)
def is_vmlinux_enum(self, name):
"""Check if name is a vmlinux enum constant"""
return (
name in self.vmlinux_symtab
and self.vmlinux_symtab[name].value_type == AssignmentType.CONSTANT
)
def get_struct_debug_info(self, name: str) -> Any:
if (
name in self.vmlinux_symtab
and self.vmlinux_symtab[name].value_type == AssignmentType.STRUCT
):
return self.vmlinux_symtab[name].debug_info
else:
raise ValueError(f"{name} is not a vmlinux struct type")
def get_vmlinux_struct_type(self, name):
"""Check if name is a vmlinux struct type"""
if (
name in self.vmlinux_symtab
and self.vmlinux_symtab[name].value_type == AssignmentType.STRUCT
):
return self.vmlinux_symtab[name].python_type
else:
raise ValueError(f"{name} is not a vmlinux struct type")
def is_vmlinux_struct(self, name):
"""Check if name is a vmlinux struct"""
return (
name in self.vmlinux_symtab
and self.vmlinux_symtab[name].value_type == AssignmentType.STRUCT
)
def handle_vmlinux_enum(self, name):
"""Handle vmlinux enum constants by returning LLVM IR constants"""
if self.is_vmlinux_enum(name):
value = self.vmlinux_symtab[name].value
logger.info(f"Resolving vmlinux enum {name} = {value}")
return ir.Constant(ir.IntType(64), value), ir.IntType(64)
return None
def get_vmlinux_enum_value(self, name):
"""Handle vmlinux.enum constants by returning LLVM IR constants"""
if self.is_vmlinux_enum(name):
value = self.vmlinux_symtab[name].value
logger.info(f"The value of vmlinux enum {name} = {value}")
return value
return None
def handle_vmlinux_struct_field(
self, struct_var_name, field_name, module, builder, local_sym_tab
):
"""Handle access to vmlinux struct fields"""
if struct_var_name in local_sym_tab:
var_info: LocalSymbol = local_sym_tab[struct_var_name]
logger.info(
f"Attempting to access field {field_name} of possible vmlinux struct {struct_var_name}"
)
python_type: type = var_info.metadata
# Check if this is a context field (ctx) or a cast struct
is_context_field = var_info.var is None
if is_context_field:
# Handle context field access (original behavior)
struct_name = python_type.__name__
globvar_ir, field_data = self.get_field_type(struct_name, field_name)
builder.function.args[0].type = ir.PointerType(ir.IntType(8))
field_ptr = self.load_ctx_field(
builder,
builder.function.args[0],
globvar_ir,
field_data,
struct_name,
)
return field_ptr, field_data
else:
# Handle cast struct field access
struct_name = python_type.__name__
globvar_ir, field_data = self.get_field_type(struct_name, field_name)
# Handle cast struct field access (use bpf_probe_read_kernel)
# Load the struct pointer from the local variable
struct_ptr = builder.load(var_info.var)
# Determine the preallocated tmp name that assignment pass should have created
tmp_name = f"{struct_var_name}_{field_name}_tmp"
# Use bpf_probe_read_kernel for non-context struct field access
field_value = self.load_struct_field(
builder,
struct_ptr,
globvar_ir,
field_data,
struct_name,
local_sym_tab,
tmp_name,
)
# Return field value and field type
return field_value, field_data
else:
raise RuntimeError("Variable accessed not found in symbol table")
@staticmethod
def load_struct_field(
builder,
struct_ptr_int,
offset_global,
field_data,
struct_name=None,
local_sym_tab=None,
tmp_name: str | None = None,
):
"""
Generate LLVM IR to load a field from a regular (non-context) struct using bpf_probe_read_kernel.
Args:
builder: llvmlite IRBuilder instance
struct_ptr_int: The struct pointer as an i64 value (already loaded from alloca)
offset_global: Global variable containing the field offset (i64)
field_data: contains data about the field
struct_name: Name of the struct being accessed (optional)
local_sym_tab: symbol table (optional) - used to locate preallocated tmp storage
tmp_name: name of the preallocated temporary storage to use (preferred)
Returns:
The loaded value
"""
# Load the offset value
offset = builder.load(offset_global)
# Convert i64 to pointer type (BPF stores pointers as i64)
i8_ptr_type = ir.PointerType(ir.IntType(8))
struct_ptr = builder.inttoptr(struct_ptr_int, i8_ptr_type)
# GEP with offset to get field pointer
field_ptr = builder.gep(
struct_ptr,
[offset],
inbounds=False,
)
# Determine the appropriate field size based on field information
field_size_bytes = 8 # Default to 8 bytes (64-bit)
int_width = 64 # Default to 64-bit
needs_zext = False
if field_data is not None:
# Try to determine the size from field metadata
if field_data.type.__module__ == ctypes.__name__:
try:
field_size_bytes = ctypes.sizeof(field_data.type)
field_size_bits = field_size_bytes * 8
if field_size_bits in [8, 16, 32, 64]:
int_width = field_size_bits
logger.info(
f"Determined field size: {int_width} bits ({field_size_bytes} bytes)"
)
# Special handling for struct_xdp_md i32 fields
if struct_name == "struct_xdp_md" and int_width == 32:
needs_zext = True
logger.info(
"struct_xdp_md i32 field detected, will zero-extend to i64"
)
else:
logger.warning(
f"Unusual field size {field_size_bits} bits, using default 64"
)
except Exception as e:
logger.warning(
f"Could not determine field size: {e}, using default 64"
)
elif field_data.type.__module__ == "vmlinux":
# For pointers to structs or complex vmlinux types
if field_data.ctype_complex_type is not None and issubclass(
field_data.ctype_complex_type, ctypes._Pointer
):
int_width = 64 # Pointers are always 64-bit
field_size_bytes = 8
logger.info("Field is a pointer type, using 64 bits")
else:
logger.warning("Complex vmlinux field type, using default 64 bits")
# Use preallocated temporary storage if provided by allocation pass
local_storage_i8_ptr = None
if tmp_name and local_sym_tab and tmp_name in local_sym_tab:
# Expect the tmp to be an alloca created during allocation pass
tmp_alloca = local_sym_tab[tmp_name].var
local_storage_i8_ptr = builder.bitcast(tmp_alloca, i8_ptr_type)
else:
# Fallback: allocate inline (not ideal, but preserves behavior)
local_storage = builder.alloca(ir.IntType(int_width))
local_storage_i8_ptr = builder.bitcast(local_storage, i8_ptr_type)
logger.warning(f"Temp storage '{tmp_name}' not found. Allocating inline")
# Use bpf_probe_read_kernel to safely read the field
# This generates:
# %gep = getelementptr i8, ptr %struct_ptr, i64 %offset (already done above as field_ptr)
# %passed = tail call ptr @llvm.bpf.passthrough.p0.p0(i32 2, ptr %gep)
# %result = call i64 inttoptr (i64 113 to ptr)(ptr %local_storage, i32 %size, ptr %passed)
from pythonbpf.helper import emit_probe_read_kernel_call
emit_probe_read_kernel_call(
builder, local_storage_i8_ptr, field_size_bytes, field_ptr
)
# Load the value from local storage
value = builder.load(
builder.bitcast(local_storage_i8_ptr, ir.PointerType(ir.IntType(int_width)))
)
# Zero-extend i32 to i64 if needed
if needs_zext:
value = builder.zext(value, ir.IntType(64))
logger.info("Zero-extended i32 value to i64")
return value
@staticmethod
def load_ctx_field(builder, ctx_arg, offset_global, field_data, struct_name=None):
"""
Generate LLVM IR to load a field from BPF context using offset.
Args:
builder: llvmlite IRBuilder instance
ctx_arg: The context pointer argument (ptr/i8*)
offset_global: Global variable containing the field offset (i64)
field_data: contains data about the field
struct_name: Name of the struct being accessed (optional)
Returns:
The loaded value (i64 register or appropriately sized)
"""
# Load the offset value
offset = builder.load(offset_global)
# Ensure ctx_arg is treated as i8* (byte pointer)
i8_ptr_type = ir.PointerType()
# Cast ctx_arg to i8* if it isn't already
if str(ctx_arg.type) != str(i8_ptr_type):
ctx_i8_ptr = builder.bitcast(ctx_arg, i8_ptr_type)
else:
ctx_i8_ptr = ctx_arg
# GEP with explicit type - this is the key fix
field_ptr = builder.gep(
ctx_i8_ptr,
[offset],
inbounds=False,
)
# Get or declare the BPF passthrough intrinsic
module = builder.function.module
try:
passthrough_fn = module.globals.get("llvm.bpf.passthrough.p0.p0")
if passthrough_fn is None:
raise KeyError
except (KeyError, AttributeError):
passthrough_type = ir.FunctionType(
i8_ptr_type,
[ir.IntType(32), i8_ptr_type],
)
passthrough_fn = ir.Function(
module,
passthrough_type,
name="llvm.bpf.passthrough.p0.p0",
)
# Call passthrough to satisfy BPF verifier
verified_ptr = builder.call(
passthrough_fn, [ir.Constant(ir.IntType(32), 0), field_ptr], tail=True
)
# Determine the appropriate IR type based on field information
int_width = 64 # Default to 64-bit
needs_zext = False # Track if we need zero-extension for xdp_md
if field_data is not None:
# Try to determine the size from field metadata
if field_data.type.__module__ == ctypes.__name__:
try:
field_size_bytes = ctypes.sizeof(field_data.type)
field_size_bits = field_size_bytes * 8
if field_size_bits in [8, 16, 32, 64]:
int_width = field_size_bits
logger.info(f"Determined field size: {int_width} bits")
# Special handling for struct_xdp_md i32 fields
# Load as i32 but extend to i64 before storing
if struct_name == "struct_xdp_md" and int_width == 32:
needs_zext = True
logger.info(
"struct_xdp_md i32 field detected, will zero-extend to i64"
)
else:
logger.warning(
f"Unusual field size {field_size_bits} bits, using default 64"
)
except Exception as e:
logger.warning(
f"Could not determine field size: {e}, using default 64"
)
elif field_data.type.__module__ == "vmlinux":
# For pointers to structs or complex vmlinux types
if field_data.ctype_complex_type is not None and issubclass(
field_data.ctype_complex_type, ctypes._Pointer
):
int_width = 64 # Pointers are always 64-bit
logger.info("Field is a pointer type, using 64 bits")
# TODO: Add handling for other complex types (arrays, embedded structs, etc.)
else:
logger.warning("Complex vmlinux field type, using default 64 bits")
# Bitcast to appropriate pointer type based on determined width
ptr_type = ir.PointerType(ir.IntType(int_width))
typed_ptr = builder.bitcast(verified_ptr, ptr_type)
# Load and return the value
value = builder.load(typed_ptr)
# Zero-extend i32 to i64 for struct_xdp_md fields
if needs_zext:
value = builder.zext(value, ir.IntType(64))
logger.info("Zero-extended i32 value to i64 for struct_xdp_md field")
return value
def has_field(self, struct_name, field_name):
"""Check if a vmlinux struct has a specific field"""
if self.is_vmlinux_struct(struct_name):
python_type = self.vmlinux_symtab[struct_name].python_type
return hasattr(python_type, field_name)
return False
def get_field_type(self, vmlinux_struct_name, field_name):
"""Get the type of a field in a vmlinux struct"""
if self.is_vmlinux_struct(vmlinux_struct_name):
python_type = self.vmlinux_symtab[vmlinux_struct_name].python_type
if hasattr(python_type, field_name):
return self.vmlinux_symtab[vmlinux_struct_name].members[field_name]
else:
raise ValueError(
f"Field {field_name} not found in vmlinux struct {vmlinux_struct_name}"
)
else:
raise ValueError(f"{vmlinux_struct_name} is not a vmlinux struct")
def get_field_index(self, vmlinux_struct_name, field_name):
"""Get the type of a field in a vmlinux struct"""
if self.is_vmlinux_struct(vmlinux_struct_name):
python_type = self.vmlinux_symtab[vmlinux_struct_name].python_type
if hasattr(python_type, field_name):
return list(
self.vmlinux_symtab[vmlinux_struct_name].members.keys()
).index(field_name)
else:
raise ValueError(
f"Field {field_name} not found in vmlinux struct {vmlinux_struct_name}"
)
else:
raise ValueError(f"{vmlinux_struct_name} is not a vmlinux struct")

View File

@ -1,22 +1,19 @@
BPF_CLANG := clang
CFLAGS := -emit-llvm -target bpf -c -D__TARGET_ARCH_x86
CFLAGS := -O2 -emit-llvm -target bpf -c
SRC := $(wildcard *.bpf.c)
LL := $(SRC:.bpf.c=.bpf.ll)
OBJ := $(SRC:.bpf.c=.bpf.o)
LL0 := $(SRC:.bpf.c=.bpf.o0.ll)
.PHONY: all clean
all: $(LL) $(OBJ) $(LL0)
all: $(LL) $(OBJ)
%.bpf.o: %.bpf.c
$(BPF_CLANG) -O2 -D__TARGET_ARCH_x86 -g -target bpf -c $< -o $@
$(BPF_CLANG) -O2 -g -target bpf -c $< -o $@
%.bpf.ll: %.bpf.c
$(BPF_CLANG) $(CFLAGS) -O2 -g -S $< -o $@
%.bpf.o0.ll: %.bpf.c
$(BPF_CLANG) $(CFLAGS) -O0 -g -S $< -o $@
$(BPF_CLANG) $(CFLAGS) -g -S $< -o $@
clean:
rm -f $(LL) $(OBJ) $(LL0)
rm -f $(LL) $(OBJ)

View File

@ -1,66 +0,0 @@
// disksnoop.bpf.c
// eBPF program (compile with: clang -O2 -g -target bpf -c disksnoop.bpf.c -o disksnoop.bpf.o)
#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_core_read.h>
char LICENSE[] SEC("license") = "GPL";
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__type(key, __u64);
__type(value, __u64);
__uint(max_entries, 10240);
} start_map SEC(".maps");
/* kprobe: record start timestamp keyed by request pointer */
SEC("kprobe/blk_mq_start_request")
int trace_start(struct pt_regs *ctx)
{
/* request * is first arg */
__u64 reqp = (__u64)(ctx->di);
__u64 ts = bpf_ktime_get_ns();
bpf_map_update_elem(&start_map, &reqp, &ts, BPF_ANY);
// /* optional debug:
bpf_printk("start: req=%llu ts=%llu\n", reqp, ts);
// */
return 0;
}
/* completion: compute latency and print data_len, cmd_flags, latency_us */
SEC("kprobe/blk_mq_end_request")
int trace_completion(struct pt_regs *ctx)
{
__u64 reqp = (__u64)(ctx->di);
__u64 *tsp;
__u64 now_ns;
__u64 delta_ns;
__u64 delta_us = 0;
bpf_printk("%lld", reqp);
tsp = bpf_map_lookup_elem(&start_map, &reqp);
if (!tsp)
return 0;
now_ns = bpf_ktime_get_ns();
delta_ns = now_ns - *tsp;
delta_us = delta_ns / 1000;
/* read request fields using CO-RE; needs vmlinux.h/BTF */
__u32 data_len = 0;
__u32 cmd_flags = 0;
/* __data_len is usually a 32/64-bit; use CORE read to be safe */
data_len = ( __u32 ) BPF_CORE_READ((struct request *)reqp, __data_len);
cmd_flags = ( __u32 ) BPF_CORE_READ((struct request *)reqp, cmd_flags);
/* print: "<bytes> <flags_hex> <latency_us>" */
bpf_printk("%u %x %llu\n", data_len, cmd_flags, delta_us);
/* remove from map */
bpf_map_delete_elem(&start_map, &reqp);
return 0;
}

View File

@ -1,10 +1,11 @@
#include "vmlinux.h"
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_endian.h>
#define u64 unsigned long long
#define u32 unsigned int
SEC("xdp")
int hello(struct xdp_md *ctx) {
bpf_printk("Hello, World! %ud \n", ctx->data);
bpf_printk("Hello, World!\n");
return XDP_PASS;
}

25
tests/c-form/ex5.bpf.c Normal file
View File

@ -0,0 +1,25 @@
#define __TARGET_ARCH_arm64
#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <bpf/bpf_core_read.h>
// Map: key = struct request*, value = u64 timestamp
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__type(key, struct request *);
__type(value, u64);
__uint(max_entries, 1024);
} start SEC(".maps");
// Attach to kprobe for blk_start_request
SEC("kprobe/blk_start_request")
int BPF_KPROBE(trace_start, struct request *req)
{
u64 ts = bpf_ktime_get_ns();
bpf_map_update_elem(&start, &req, &ts, BPF_ANY);
return 0;
}
char LICENSE[] SEC("license") = "GPL";

View File

@ -1,9 +1,23 @@
// SPDX-License-Identifier: GPL-2.0
#include "vmlinux.h"
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
struct trace_entry {
short unsigned int type;
unsigned char flags;
unsigned char preempt_count;
int pid;
};
struct trace_event_raw_sys_enter {
struct trace_entry ent;
long int id;
long unsigned int args[6];
char __data[0];
};
struct event {
__u32 pid;
__u32 uid;
@ -19,7 +33,7 @@ struct {
SEC("tp/syscalls/sys_enter_setuid")
int handle_setuid_entry(struct trace_event_raw_sys_enter *ctx) {
struct event data = {};
struct blk_integrity_iter it = {};
// Extract UID from the syscall arguments
data.uid = (unsigned int)ctx->args[0];
data.ts = bpf_ktime_get_ns();

View File

@ -1,27 +0,0 @@
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <linux/types.h>
struct test_struct {
__u64 a;
__u64 b;
};
struct test_struct w = {};
volatile __u64 prev_time = 0;
SEC("tracepoint/syscalls/sys_enter_execve")
int trace_execve(void *ctx)
{
bpf_printk("previous %ul now %ul", w.b, w.a);
__u64 ts = bpf_ktime_get_ns();
bpf_printk("prev %ul now %ul", prev_time, ts);
w.a = ts;
w.b = prev_time;
prev_time = ts;
return 0;
}
char LICENSE[] SEC("license") = "GPL";

View File

@ -1,15 +0,0 @@
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
SEC("xdp")
int print_xdp_data(struct xdp_md *ctx)
{
// 'data' is a pointer to the start of packet data
long data = (long)ctx->data;
bpf_printk("ctx->data = %lld\n", data);
return XDP_PASS;
}
char LICENSE[] SEC("license") = "GPL";

Some files were not shown because too many files have changed in this diff Show More