Files
python-bpf/docs/getting-started/quickstart.md
2026-01-25 13:31:21 +05:30

250 lines
6.2 KiB
Markdown

# Quick Start
This guide will walk you through creating your first BPF program with PythonBPF.
## Your First BPF Program
Let's create a simple "Hello World" program that prints a message every time a process is executed on your system.
### Step 1: Create the Program
Create a new file called `hello_world.py`:
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load()
b.attach_all()
trace_pipe()
```
### Step 2: Run the Program
Run the program with sudo (required for BPF operations):
```bash
sudo python3 hello_world.py
```
### Step 3: See it in Action
Open another terminal and run any command:
```bash
ls
echo "test"
date
```
You should see "Hello, World!" printed in the first terminal for each command executed!
Press `Ctrl+C` to stop the program.
## Understanding the Code
Let's break down what each part does:
### Imports
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from ctypes import c_void_p, c_int64
```
* `bpf` - Decorator to mark functions for BPF compilation
* `section` - Decorator to specify which kernel event to attach to
* `bpfglobal` - Decorator for BPF global variables
* `BPF` - Class to compile, load, and attach BPF programs
* `trace_pipe` - Utility to read kernel trace output (similar to BCC)
* `c_void_p`, `c_int64` - C types for function signatures
### The BPF Function
```python
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def hello_world(ctx: c_void_p) -> c_int64:
print("Hello, World!")
return 0
```
* `@bpf` - Marks this function to be compiled to BPF bytecode
* `@section("tracepoint/syscalls/sys_enter_execve")` - Attaches to the execve syscall tracepoint (called when processes start)
* `ctx: c_void_p` - Context parameter (required for all BPF functions)
* `print()` - the PythonBPF API for `bpf_printk` helper function
* `return 0` - BPF functions must return an integer
### License Declaration
```python
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
```
* The Linux kernel requires BPF programs to declare a license
* Most kernel features require GPL-compatible licenses
* This is defined as a BPF global variable
### Compilation and Execution
```python
b = BPF()
b.load()
b.attach_all()
trace_pipe()
```
* `BPF()` - Creates a BPF object and compiles the current file
* `b.load()` - Loads the compiled BPF program into the kernel
* `b.attach_all()` - Attaches all BPF programs to their specified hooks
* `trace_pipe()` - Reads and displays output from the kernel trace buffer
Alternatively, you can also use the `compile()` function to compile the BPF code to an object file:
```python
from pythonbpf import compile
```
This object file can then be loaded using any other userspace library in any language.
## Next Example: Tracking Process IDs
Let's make a more interesting program that tracks which processes are being created:
```python
from pythonbpf import bpf, section, bpfglobal, BPF, trace_pipe
from pythonbpf.helper import pid
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def track_exec(ctx: c_void_p) -> c_int64:
process_id = pid()
print(f"Process with PID: {process_id} is starting")
return 0
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
b = BPF()
b.load()
b.attach_all()
trace_pipe()
```
This program uses BPF helper functions:
* `pid()` - Gets the current process ID
Run it with `sudo python3 track_exec.py` and watch processes being created!
## Common Patterns
### Tracepoints
Tracepoints are predefined hooks in the kernel. Common ones include:
```python
# System calls
@section("tracepoint/syscalls/sys_enter_execve")
@section("tracepoint/syscalls/sys_enter_clone")
@section("tracepoint/syscalls/sys_enter_open")
# Scheduler events
@section("tracepoint/sched/sched_process_fork")
@section("tracepoint/sched/sched_switch")
```
### Kprobes
Kprobes allow you to attach to any kernel function:
```python
@section("kprobe/do_sys_open")
def trace_open(ctx: c_void_p) -> c_int64:
print("File is being opened")
return 0
```
### XDP (eXpress Data Path)
For network packet processing:
```python
from pythonbpf.helper import XDP_PASS
@section("xdp")
def xdp_pass(ctx: c_void_p) -> c_int64:
return XDP_PASS
```
## Best Practices
1. **Always include a LICENSE** - Required by the kernel
2. **Use type hints** - Required by PythonBPF to generate correct code
3. **Return the correct type** - Match the expected return type for your program type
4. **Test incrementally** - Start simple and add complexity gradually
5. **Check kernel logs** - Use `dmesg` to see BPF verifier messages if loading fails
## Common Issues
### Program Won't Load
If your BPF program fails to load:
* Check `dmesg` for verifier error messages
* Ensure your LICENSE is GPL-compatible
* Verify you're using supported BPF features
* Make sure return types match function signatures
### No Output
If you don't see output:
* Verify the tracepoint/kprobe is being triggered
* Check that you're running with sudo
* Ensure `/sys/kernel/tracing/trace_pipe` is accessible
### Compilation Errors
If compilation fails:
* Check that `llc` is installed and in your PATH
* Verify your Python syntax is correct
* Ensure all imported types are from `ctypes`
* In the worst case, compile object files manually using `compile_to_ir()` and `llc` to get detailed errors
### Verification Failure
If verification fails:
* Compile the object files using `compile()` function instead of loading directly
* Run `sudo check.sh check <bpf>.o` to get detailed verification output
## Next Steps
Now that you understand the basics, explore:
* {doc}`../user-guide/decorators` - Learn about all available decorators
* {doc}`../user-guide/maps` - Use BPF maps for data storage and communication
* {doc}`../user-guide/structs` - Define custom data structures
* {doc}`../user-guide/helpers` - Discover all available BPF helper functions
* [Examples directory](https://github.com/pythonbpf/Python-BPF/tree/master/examples) - See more complex examples