Files
python-bpf/docs/user-guide/decorators.md
2026-01-27 02:16:03 +05:30

449 lines
9.0 KiB
Markdown

# Decorators
Decorators are the primary way to mark Python code for BPF compilation. PythonBPF provides five core decorators that control how your code is transformed into eBPF bytecode.
## @bpf
The `@bpf` decorator marks functions or classes for BPF compilation.
### Usage
```python
from pythonbpf import bpf
@bpf
def my_function(ctx):
# This function will be compiled to BPF bytecode
pass
```
### Description
Any function or class decorated with `@bpf` will be processed by the PythonBPF compiler and transformed into LLVM IR, then compiled to BPF bytecode. This is the fundamental decorator that enables BPF compilation.
### Rules
* Must be used on top-level functions or classes
* The function must have proper type hints
* Return types must be BPF-compatible
* Only BPF-compatible operations are allowed inside
### Example
```python
from pythonbpf import bpf, section
from ctypes import c_void_p, c_int64
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def trace_exec(ctx: c_void_p) -> c_int64:
print("Process started")
return c_int64(0)
```
## @section
The `@section(name)` decorator specifies which kernel hook to attach the BPF program to.
### Usage
```python
from pythonbpf import bpf, section
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def trace_open(ctx):
pass
```
### Section Types
#### Tracepoints
Tracepoints are stable kernel hooks defined in `/sys/kernel/tracing/events/`:
```python
# System call tracepoints
@section("tracepoint/syscalls/sys_enter_execve")
@section("tracepoint/syscalls/sys_enter_clone")
@section("tracepoint/syscalls/sys_enter_open")
@section("tracepoint/syscalls/sys_exit_read")
# Scheduler tracepoints
@section("tracepoint/sched/sched_process_fork")
@section("tracepoint/sched/sched_process_exit")
@section("tracepoint/sched/sched_switch")
# Block I/O tracepoints
@section("tracepoint/block/block_rq_insert")
@section("tracepoint/block/block_rq_complete")
```
#### Kprobes
Kprobes allow attaching to any kernel function:
```python
@section("kprobe/do_sys_open")
def trace_sys_open(ctx):
pass
@section("kprobe/__x64_sys_write")
def trace_write(ctx):
pass
```
#### Kretprobes
Kretprobes trigger when a kernel function returns:
```python
@section("kretprobe/do_sys_open")
def trace_open_return(ctx):
pass
```
#### XDP (eXpress Data Path)
For network packet processing at the earliest point:
```python
from pythonbpf.helper import XDP_PASS
from ctypes import c_void_p, c_int64
@section("xdp")
def xdp_prog(ctx: c_void_p) -> c_int64:
# XDP_PASS, XDP_DROP, XDP_ABORTED constants available from pythonbpf.helper
return XDP_PASS
```
### Finding Tracepoints
To find available tracepoints on your system:
```bash
# List all tracepoints
ls /sys/kernel/tracing/events/
# List syscall tracepoints
ls /sys/kernel/tracing/events/syscalls/
# View tracepoint format
cat /sys/kernel/tracing/events/syscalls/sys_enter_open/format
```
## @map
The `@map` decorator marks a function as a BPF map definition.
### Usage
```python
from pythonbpf import bpf, map
from pythonbpf.maps import HashMap
from ctypes import c_uint32, c_uint64
@bpf
@map
def my_map() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=1024)
```
### Description
Maps are BPF data structures used to:
* Store state between BPF program invocations
* Communicate data between BPF programs
* Share data with userspace
The function must return a map type (HashMap, PerfEventArray, RingBuffer) and the return type must be annotated.
### Example
```python
from pythonbpf import bpf, map, section
from pythonbpf.maps import HashMap
from pythonbpf.helper import pid
from ctypes import c_void_p, c_int64, c_uint32, c_uint64
@bpf
@map
def process_count() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=4096)
@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def count_clones(ctx: c_void_p) -> c_int64:
process_id = pid()
count = process_count.lookup(process_id)
if count:
process_count.update(process_id, count + 1)
else:
process_count.update(process_id, c_uint64(1))
return 0
```
See {doc}`maps` for more details on available map types.
## @struct
The `@struct` decorator marks a class as a BPF struct definition.
### Usage
```python
from pythonbpf import bpf, struct
from ctypes import c_uint64, c_uint32
@bpf
@struct
class Event:
timestamp: c_uint64
pid: c_uint32
cpu: c_uint32
```
### Description
Structs allow you to define custom data types for use in BPF programs. They can be used:
* As map keys and values
* For perf event output
* In ring buffer submissions
* As local variables
### Field Types
Supported field types include:
* **Integer types**: `c_int8`, `c_int16`, `c_int32`, `c_int64`, `c_uint8`, `c_uint16`, `c_uint32`, `c_uint64`
* **Pointers**: `c_void_p`, `c_char_p`
* **Fixed strings**: `str(N)` where N is the size (e.g., `str(16)`)
* **Nested structs**: Other `@struct` decorated classes
### Example
```python
from pythonbpf import bpf, struct, map, section
from pythonbpf.maps import RingBuffer
from pythonbpf.helper import pid, ktime
from ctypes import c_void_p, c_int64, c_uint64, c_uint32
@bpf
@struct
class ProcessEvent:
timestamp: c_uint64
pid: c_uint32
comm: str(16)
@bpf
@map
def events() -> RingBuffer:
return RingBuffer(max_entries=4096)
@bpf
@section("tracepoint/syscalls/sys_enter_execve")
def track_processes(ctx: c_void_p) -> c_int64:
event = ProcessEvent()
event.timestamp = ktime()
event.pid = pid()
comm(event.comm) # Fills event.comm with process name
events.output(event)
return 0
```
See {doc}`structs` for more details on working with structs.
## @bpfglobal
The `@bpfglobal` decorator marks a function as a BPF global variable definition.
### Usage
```python
from pythonbpf import bpf, bpfglobal
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
```
### Description
BPF global variables are values that:
* Are initialized when the program loads
* Can be read by all BPF functions
* Must be constant (cannot be modified at runtime in current implementation)
### Common Global Variables
#### LICENSE (Required)
Every BPF program must declare a license:
```python
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
```
Valid licenses include:
* `"GPL"` - GNU General Public License
* `"GPL v2"` - GPL version 2
* `"Dual BSD/GPL"` - Dual licensed
* `"Dual MIT/GPL"` - Dual licensed
```{warning}
Many BPF features require a GPL-compatible license. Using a non-GPL license may prevent your program from loading or accessing certain kernel features.
```
#### Custom Global Variables
You can define other global variables:
```python
@bpf
@bpfglobal
def DEBUG_MODE() -> int:
return 1
@bpf
@bpfglobal
def MAX_EVENTS() -> int:
return 1000
```
These can be referenced in your BPF functions, though modifying them at runtime is currently not supported.
## Combining Decorators
Decorators are often used together. The order matters:
### Correct Order
```python
@bpf # Always first
@section("...") # Section before other decorators
def my_function():
pass
@bpf # Always first
@map # Map/struct/bpfglobal after @bpf
def my_map():
pass
@bpf # Always first
@struct # Map/struct/bpfglobal after @bpf
class MyStruct:
pass
@bpf # Always first
@bpfglobal # Map/struct/bpfglobal after @bpf
def LICENSE():
return "GPL"
```
### Examples by Use Case
#### Simple Tracepoint
```python
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def trace_open(ctx: c_void_p) -> c_int64:
return c_int64(0)
```
#### Map Definition
```python
@bpf
@map
def counters() -> HashMap:
return HashMap(key=c_uint32, value=c_uint64, max_entries=256)
```
#### Struct Definition
```python
@bpf
@struct
class Event:
timestamp: c_uint64
value: c_uint32
```
#### Global Variable
```python
@bpf
@bpfglobal
def LICENSE() -> str:
return "GPL"
```
## Best Practices
1. **Always use @bpf first** - It must be the outermost decorator
2. **Provide type hints** - Required for proper code generation
3. **Test incrementally** - Verify each component works before combining
## Common Errors
### Missing @bpf Decorator
```python
# Wrong - missing @bpf
@section("tracepoint/syscalls/sys_enter_open")
def my_func(ctx):
pass
# Correct
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def my_func(ctx):
pass
```
### Wrong Decorator Order
```python
# Wrong - @section before @bpf
@section("tracepoint/syscalls/sys_enter_open")
@bpf
def my_func(ctx):
pass
# Correct
@bpf
@section("tracepoint/syscalls/sys_enter_open")
def my_func(ctx):
pass
```
### Missing Type Hints
```python
# Wrong - no type hints
@bpf
def my_func(ctx):
pass
# Correct
@bpf
def my_func(ctx: c_void_p) -> c_int64:
pass
```
## Next Steps
* Learn about {doc}`maps` for data storage and communication
* Explore {doc}`structs` for defining custom data types
* Understand {doc}`compilation` to see how code is transformed
* Check out {doc}`helpers` for available BPF helper functions